Anderson, Lara B.; Apruzzi, Fabio; Gao, Xin; Gray, James; Lee, Seung-Joo A new construction of Calabi-Yau manifolds: generalized CICYs. (English) Zbl 1334.14023 Nucl. Phys., B 906, 441-496 (2016). Summary: We present a generalization of the complete intersection in products of projective space (CICY) construction of Calabi-Yau manifolds. CICY three-folds and four-folds have been studied extensively in the physics literature. Their utility stems from the fact that they can be simply described in terms of a ‘configuration matrix’, a matrix of integers from which many of the details of the geometries can be easily extracted. The generalization we present is to allow negative integers in the configuration matrices which were previously taken to have positive semi-definite entries. This broadening of the complete intersection construction leads to a larger class of Calabi-Yau manifolds than that considered in previous work, which nevertheless enjoys much of the same degree of calculational control. These new Calabi-Yau manifolds are complete intersections in (not necessarily Fano) ambient spaces with an effective anticanonical class. We find examples with topology distinct from any that has appeared in the literature to date. The new manifolds thus obtained have many interesting features. For example, they can have smaller Hodge numbers than ordinary CICYs and lead to many examples with elliptic and K3-fibration structures relevant to F-theory and string dualities. Cited in 2 ReviewsCited in 33 Documents MSC: 14J32 Calabi-Yau manifolds (algebro-geometric aspects) 14J35 \(4\)-folds 81T30 String and superstring theories; other extended objects (e.g., branes) in quantum field theory Software:cohomCalg; Calabi-Yau database; PALP; STRINGVACUA PDF BibTeX XML Cite \textit{L. B. Anderson} et al., Nucl. Phys., B 906, 441--496 (2016; Zbl 1334.14023) Full Text: DOI arXiv OpenURL References: [1] Hubsch, T., Calabi-Yau manifolds: motivations and constructions, Commun. Math. Phys., 108, 291, (1987) · Zbl 0602.53061 [2] Candelas, P.; Dale, A. M.; Lutken, C. A.; Schimmrigk, R., Complete intersection Calabi-Yau manifolds, Nucl. Phys. B, 298, 493, (1988) [3] Green, P.; Hubsch, T., Calabi-Yau manifolds as complete intersections in products of complex projective spaces, Commun. Math. Phys., 109, 99, (1987) · Zbl 0611.53055 [4] Candelas, P.; Lutken, C. A.; Schimmrigk, R., Complete intersection Calabi-Yau manifolds. 2. three generation manifolds, Nucl. Phys. B, 306, 113, (1988) [5] Anderson, L. B.; Gray, J.; Lukas, A.; Palti, E., Two hundred heterotic standard models on smooth Calabi-Yau threefolds, Phys. Rev. D, 84, (2011) [6] Anderson, L. B.; Gray, J.; Lukas, A.; Ovrut, B., The Atiyah class and complex structure stabilization in heterotic Calabi-Yau compactifications, J. High Energy Phys., 1110, (2011) · Zbl 1303.81139 [7] Anderson, L. B.; Gray, J.; Lukas, A.; Palti, E., Heterotic line bundle standard models, J. High Energy Phys., 1206, (2012) [8] Anderson, L. B.; Gray, J.; Lukas, A.; Ovrut, B., Vacuum varieties, holomorphic bundles and complex structure stabilization in heterotic theories, J. High Energy Phys., 1307, (2013) · Zbl 1342.81391 [9] Anderson, L. B.; Constantin, A.; Gray, J.; Lukas, A.; Palti, E., A comprehensive scan for heterotic SU(5) GUT models, J. High Energy Phys., 1401, (2014) [10] Anderson, L. B.; Constantin, A.; Lee, S. J.; Lukas, A., Hypercharge flux in heterotic compactifications, Phys. Rev. D, 91, 4, (2015) [11] Buchbinder, E. I.; Constantin, A.; Lukas, A., Heterotic QCD axion, Phys. Rev. D, 91, 4, (2015) [12] Brunner, I.; Lynker, M.; Schimmrigk, R., Unification of M theory and F theory Calabi-Yau fourfold vacua, Nucl. Phys. B, 498, 156, (1997) · Zbl 0973.14509 [13] Gray, J.; Haupt, A. S.; Lukas, A., All complete intersection Calabi-Yau four-folds, J. High Energy Phys., 1307, (2013) · Zbl 1342.14086 [14] Gray, J.; Haupt, A.; Lukas, A., Calabi-Yau fourfolds in products of projective space, Proc. Symp. Pure Math., 88, 281, (2014) · Zbl 1325.14058 [15] Gray, J.; Haupt, A. S.; Lukas, A., Topological invariants and fibration structure of complete intersection Calabi-Yau four-folds, J. High Energy Phys., 1409, (2014) [16] Candelas, P.; De La Ossa, X.; Font, A.; Katz, S. H.; Morrison, D. R., Mirror symmetry for two parameter models. 1, Nucl. Phys. B, 416, 481, (1994) · Zbl 0899.14017 [17] Green, P.; Hubsch, T., Polynomial deformations and cohomology of Calabi-Yau manifolds, Commun. Math. Phys., 113, 505, (1987) · Zbl 0633.53089 [18] Candelas, P.; Font, A.; Katz, S. H.; Morrison, D. R., Mirror symmetry for two parameter models. 2, Nucl. Phys. B, 429, 626, (1994) · Zbl 1020.32506 [19] Berglund, P.; Hubsch, T., On a residue representation of deformation, Koszul and chiral rings, Int. J. Mod. Phys. A, 10, 3381, (1995) · Zbl 1044.32503 [20] Mavlyutov, A., Embedding of Calabi-Yau deformations into toric varieties · Zbl 1082.14043 [21] Mavlyutov, A. E., Deformations of Calabi-Yau hypersurfaces arising from deformations of toric varieties, Invent. Math., 157, 621, (2004) · Zbl 1057.14068 [22] Mori, S., Flip theorem and the existence of minimal models for 3-folds, J. Am. Math. Soc., 1, 1, 117-253, (Jan. 1988) [23] Clemens, H.; Kollar, J.; Mori, S., Higher-dimensional complex geometry, Asterique, 166, (1989) [24] Birkar, C.; Cascini, P.; Hacon, C. D.; McKernan, J., Existence of minimal models for varieties of log general type, J. Am. Math. Soc., 23, 405-468, (2010) · Zbl 1210.14019 [25] Fujino, O., New developments in the theory of minimal models, Sugaku (Math. Soc. Jpn.), 61, 2, 162-186, (2009) [26] Morrison, D. R.; Taylor, W., Classifying bases for 6D F-theory models, Cent. Eur. J. Phys., 10, 1072, (2012) · Zbl 1255.81210 [27] Grassi, A.; Halverson, J.; Shaneson, J.; Taylor, W., Non-higgsable QCD and the standard model spectrum in F-theory, J. High Energy Phys., 1501, (2015) · Zbl 1388.81924 [28] Morrison, D. R.; Taylor, W., Non-higgsable clusters for 4D F-theory models, J. High Energy Phys., 1505, (2015) · Zbl 1388.81871 [29] L.B. Anderson, F. Apruzzi, X. Gao, J. Gray, S.J. Lee, in press. [30] Kreuzer, M.; Skarke, H., Complete classification of reflexive polyhedra in four-dimensions, Adv. Theor. Math. Phys., 4, 1209, (2002) · Zbl 1017.52007 [31] Batyrev, V.; Ciocan-Fontanine, I.; Kim, B.; van Straten, D., Conifold transitions and mirror symmetry for Calabi-Yau complete intersections in Grassmannians, Nucl. Phys. B, 514, 640, (1998) · Zbl 0896.14025 [32] Batyrev, V.; Ciocan-Fontanine, I.; Kim, B.; van Straten, D., Mirror symmetry and toric degenerations of partial flag manifolds, Acta Math., 184, 1, 1-39, (2000) · Zbl 1022.14014 [33] Batyrev, V.; Kreuzer, M., Constructing new Calabi-Yau 3-folds and their mirrors via conifold transitions, Adv. Theor. Math. Phys., 14, 879, (2010) · Zbl 1242.14037 [34] Batyrev, V., Dual polyhedra and mirror symmetry for Calabi-Yau hypersurfaces in toric varieties, J. Algebraic Geom., 3, 493-545, (1994) · Zbl 0829.14023 [35] Borisov, L., Towards the mirror symmetry for Calabi-Yau complete intersections in Gorenstein toric Fano varieties [36] Batyrev, V.; Borisov, L., On Calabi-Yau complete intersections in toric varieties, (Higher-dimensional Complex Varieties, Trento, 1994, (1996), de Gruyter Berlin), 39-65 · Zbl 0908.14015 [37] Klemm, A.; Schimmrigk, R., Landau-Ginzburg string vacua, Nucl. Phys. B, 411, 559, (1994) · Zbl 1049.81601 [38] Kapustka, G.; Kapustka, M., A cascade of determinantal Calabi-Yau threefolds · Zbl 1207.14043 [39] Hori, K.; Tong, D., Aspects of non-abelian gauge dynamics in two-dimensional \(N = (2, 2)\) theories, J. High Energy Phys., 0705, (2007) [40] Donagi, R.; Sharpe, E., GLSM’s for partial flag manifolds, J. Geom. Phys., 58, 1662, (2008) · Zbl 1218.81091 [41] Hori, K., Duality in two-dimensional (\(2, 2\)) supersymmetric non-abelian gauge theories, J. High Energy Phys., 1310, (2013) · Zbl 1342.81635 [42] Jockers, H.; Kumar, V.; Lapan, J. M.; Morrison, D. R.; Romo, M., Nonabelian 2D gauge theories for determinantal Calabi-Yau varieties, J. High Energy Phys., 1211, (2012) [43] Jockers, H.; Kumar, V.; Lapan, J. M.; Morrison, D. R.; Romo, M., Two-sphere partition functions and Gromov-Witten invariants, Commun. Math. Phys., 325, 1139, (2014) · Zbl 1301.81253 [44] Rodland, E. A., The pfaffian Calabi-Yau, its mirror, and their link to the Grassmannian \(G(2, 7)\), Compos. Math., 122, 135, (2000) · Zbl 0974.14026 [45] Lynker, M.; Schimmrigk, R.; Wisskirchen, A., Landau-Ginzburg vacua of string, M theory and F theory at \(c = 12\), Nucl. Phys. B, 550, 123, (1999) · Zbl 1063.14504 [46] Hubsch, T., Calabi-Yau manifolds: A bestiary for physicists, (1994), World Scientific · Zbl 0771.53002 [47] Huybrechts, D., Complex geometry, an introduction, (2004), Springer [48] Hartshorne, R., Algebraic geometry, Springer GTM, vol. 52, (1977), Springer-Verlag · Zbl 0367.14001 [49] P. Grifiths, J. Harris, Principles of algebraic geometry, 1978. [50] Yau, S. T., Compact three-dimensional Kähler manifolds with zero Ricci curvature, (Proceedings, Anomalies, Geometry, Topology, Argonne/Chicago, (1985)), 395-406 [51] Yau, S. T., On Ricci curvature of a compact Kähler manifold and complex Monge-Ampére equation I, Commun. Pure Appl. Math., 31, 339-411, (1979) · Zbl 0369.53059 [52] Anderson, L. B.; He, Y. H.; Lukas, A., Heterotic compactification, an algorithmic approach, J. High Energy Phys., 0707, (2007) [53] Anderson, L. B.; He, Y. H.; Lukas, A., Monad bundles in heterotic string compactifications, J. High Energy Phys., 0807, (2008) [54] Bott, R., On a theorem of Lefschetz, Mich. Math. J., 6, 79, (1959) [55] Gray, J.; He, Y. H.; Ilderton, A.; Lukas, A., STRINGVACUA: a Mathematica package for studying vacuum configurations in string phenomenology, Comput. Phys. Commun., 180, 1, 107-119, (2009) · Zbl 1198.81156 [56] Anderson, L. B., Heterotic and M-theory compactifications for string phenomenology, (2008), Thesis, Oxford University DPhil [57] Berglund, P.; Hubsch, T.; Parkes, L., Gauge neutral matter in three generation superstring compactifications, Mod. Phys. Lett. A, 5, 1485, (1990) · Zbl 1020.81949 [58] Donagi, R.; He, Y. H.; Ovrut, B. A.; Reinbacher, R., Moduli dependent spectra of heterotic compactifications, Phys. Lett. B, 598, 279, (2004) · Zbl 1247.14044 [59] Donagi, R.; He, Y. H.; Ovrut, B. A.; Reinbacher, R., The spectra of heterotic standard model vacua, J. High Energy Phys., 0506, (2005) [60] Braun, V.; He, Y. H.; Ovrut, B. A.; Pantev, T., Moduli dependent mu-terms in a heterotic standard model, J. High Energy Phys., 0603, (2006) · Zbl 1226.81169 [61] Anderson, L. B.; Gray, J.; Grayson, D.; He, Y. H.; Lukas, A., Yukawa couplings in heterotic compactification, Commun. Math. Phys., 297, 95, (2010) · Zbl 1203.81130 [62] Anderson, L. B.; Gray, J.; He, Y. H.; Lukas, A., Exploring positive monad bundles and a new heterotic standard model, J. High Energy Phys., 1002, (2010) · Zbl 1270.81146 [63] Jurke, B., CY explorer website [64] L.B. Anderson, X. Gao, J. Gray, S.J. Lee, in press. [65] Anderson, L. B.; Taylor, W., Geometric constraints in dual F-theory and heterotic string compactifications, J. High Energy Phys., 1408, (2014) [66] Taylor, W.; Wang, Y. N., Non-toric bases for elliptic Calabi-Yau threefolds and 6D F-theory vacua · Zbl 1386.14150 [67] Johnson, S. B.; Taylor, W., Calabi-Yau threefolds with large \(h^{2, 1}\), J. High Energy Phys., 1410, (2014) · Zbl 1333.81384 [68] Martini, G.; Taylor, W., 6D F-theory models and elliptically fibered Calabi-Yau threefolds over semi-toric base surfaces, J. High Energy Phys., 1506, (2015) · Zbl 1388.83862 [69] Morrison, D. R.; Taylor, W., Toric bases for 6D F-theory models, Fortschr. Phys., 60, 1187, (2012) · Zbl 1255.81210 [70] Cvetic, M.; Garcia-Etxebarria, I.; Halverson, J., On the computation of non-perturbative effective potentials in the string theory landscape: IIB/F-theory perspective, Fortschr. Phys., 59, 243, (2011) · Zbl 1209.81162 [71] Apruzzi, F.; Gautason, F. F.; Parameswaran, S.; Zagermann, M., Wilson lines and Chern-Simons flux in explicit heterotic Calabi-Yau compactifications, J. High Energy Phys., 1502, (2015) · Zbl 1388.81271 [72] Braun, V.; Ovrut, B. A.; Pantev, T.; Reinbacher, R., Elliptic Calabi-Yau threefolds with \(Z(3) \times Z(3)\) Wilson lines, J. High Energy Phys., 0412, (2004) [73] Ovrut, B. A.; Purves, A.; Spinner, S., Wilson lines and a canonical basis of SU(4) heterotic standard models, J. High Energy Phys., 1211, (2012) [74] Anderson, L. B.; Garcia-Etxebarria, I.; Grimm, T. W.; Keitel, J., Physics of F-theory compactifications without section, J. High Energy Phys., 1412, (2014) · Zbl 1333.81299 [75] Klevers, D.; Mayorga Pena, D. K.; Oehlmann, P. K.; Piragua, H.; Reuter, J., F-theory on all toric hypersurface fibrations and its Higgs branches, J. High Energy Phys., 1501, (2015) · Zbl 1388.81563 [76] Cvetic, M.; Donagi, R.; Klevers, D.; Piragua, H.; Poretschkin, M., F-theory vacua with \(Z_3\) gauge symmetry · Zbl 1329.81309 [77] Grimm, T. W.; Pugh, T. G.; Regalado, D., Non-abelian discrete gauge symmetries in F-theory · Zbl 1388.81322 [78] Garcia-Etxebarria, I.; Grimm, T. W.; Keitel, J., Yukawas and discrete symmetries in F-theory compactifications without section, J. High Energy Phys., 1411, (2014) · Zbl 1333.81332 [79] Karozas, A.; King, S. F.; Leontaris, G. K.; Meadowcroft, A., Discrete family symmetry from F-theory guts, J. High Energy Phys., 1409, (2014) [80] Mayrhofer, C.; Palti, E.; Till, O.; Weigand, T., Discrete gauge symmetries by higgsing in four-dimensional F-theory compactifications, J. High Energy Phys., 1412, (2014) [81] Mayrhofer, C.; Palti, E.; Till, O.; Weigand, T., On discrete symmetries and torsion homology in F-theory, J. High Energy Phys., 1506, (2015) · Zbl 1388.81353 [82] Braun, V.; Kreuzer, M.; Ovrut, B. A.; Scheidegger, E., Worldsheet instantons, torsion curves, and non-perturbative superpotentials, Phys. Lett. B, 649, 334, (2007) · Zbl 1248.81156 [83] Braun, V.; Kreuzer, M.; Ovrut, B. A.; Scheidegger, E., Worldsheet instantons and torsion curves, part A: direct computation, J. High Energy Phys., 0710, (2007) [84] Braun, V.; Kreuzer, M.; Ovrut, B. A.; Scheidegger, E., Worldsheet instantons and torsion curves, part B: mirror symmetry, J. High Energy Phys., 0710, (2007) [85] Braun, V., On free quotients of complete intersection Calabi-Yau manifolds, J. High Energy Phys., 1104, (2011) · Zbl 1250.14026 [86] Blumenhagen, R.; Jurke, B.; Rahn, T.; Roschy, H., Cohomology of line bundles: a computational algorithm, J. Math. Phys., 51, 103525, (2010) · Zbl 1314.55012 [87] Blumenhagen, R.; Jurke, B.; Rahn, T.; Roschy, H., Cohomology of line bundles: applications, J. Math. Phys., 53, (2012) · Zbl 1273.81180 [88] Blumenhagen, R.; Jurke, B.; Rahn, T., Computational tools for cohomology of toric varieties, Adv. High Energy Phys., 2011, 152749, (2011) · Zbl 1234.81107 [89] Kreuzer, M.; Skarke, H., PALP: a package for analyzing lattice polytopes with applications to toric geometry, Comput. Phys. Commun., 157, 87, (2004) · Zbl 1196.14007 [90] Anderson, L. B.; Gray, J.; He, Y.-H.; Lee, S. J.; Lukas, A., CICY package, based on methods described in [91] Gao, X.; Shukla, P., On classifying the divisor involutions in Calabi-Yau threefolds, J. High Energy Phys., 1311, (2013) · Zbl 1342.81425 [92] Altman, R.; Gray, J.; He, Y. H.; Jejjala, V.; Nelson, B. D., A Calabi-Yau database: threefolds constructed from the kreuzer-skarke List, J. High Energy Phys., 1502, (2015) · Zbl 1388.53071 [93] He, Y. H.; Lee, S. J.; Lukas, A., Heterotic models from vector bundles on toric Calabi-Yau manifolds, J. High Energy Phys., 1005, (2010) · Zbl 1287.81094 [94] He, Y. H.; Kreuzer, M.; Lee, S. J.; Lukas, A., Heterotic bundles on Calabi-Yau manifolds with small Picard number, J. High Energy Phys., 1112, (2011) · Zbl 1306.81246 [95] He, Y. H.; Lee, S. J.; Lukas, A.; Sun, C., Heterotic model building: 16 special manifolds, J. High Energy Phys., 1406, (2014) [96] Lin, H.; Wu, B.; Yau, S. T., Heterotic string compactification and new vector bundles · Zbl 1342.81450 [97] Beasley, C.; Witten, E., Residues and world sheet instantons, J. High Energy Phys., 0310, (2003) [98] Beasley, C.; Witten, E., New instanton effects in string theory, J. High Energy Phys., 0602, (2006) [99] Witten, E., Nonperturbative superpotentials in string theory, Nucl. Phys. B, 474, 343, (1996) · Zbl 0925.32012 [100] Witten, E., Phases of \(N = 2\) theories in two-dimensions, Nucl. Phys. B, 403, 159, (1993) · Zbl 0910.14020 [101] Eastwood, M. G., The generalized Penrose-Ward transform, Math. Proc. Camb. Philos. Soc., 97, 165, (1985) · Zbl 0581.32035 [102] Distler, J.; Greene, B. R., Aspects of (\(2, 0\)) string compactifications, Nucl. Phys. B, 304, 1, (1988) This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.