×

Exoflops in two dimensions. (English) Zbl 1388.81472

Summary: An exoflop occurs in the gauged linear \(\sigma\)-model by varying the Kähler form so that a subspace appears to shrink to a point and then reemerge “outside” the original manifold. This occurs for \(K3\) surfaces where a rational curve is “flopped” from inside to outside the \(K3\) surface. We see that whether a rational curve contracts to an orbifold phase or an exoflop depends on whether this curve is a line or conic. We study how the D-brane category of the smooth \(K3\) surface is described by the exoflop and, in particular, find the location of a massless D-brane in the exoflop limit. We relate exoflops to noncommutative resolutions.

MSC:

81T30 String and superstring theories; other extended objects (e.g., branes) in quantum field theory

Software:

Macaulay2
PDF BibTeX XML Cite
Full Text: DOI arXiv

References:

[1] Witten, E., Phases of N = 2 theories in two dimensions, Nucl. Phys., B 403, 159, (1993) · Zbl 0910.14020
[2] Aspinwall, PS; Plesser, MR, Decompactifications and massless D-branes in hybrid models, JHEP, 07, 078, (2010) · Zbl 1290.81095
[3] Bertolini, M.; Melnikov, IV; Plesser, MR, Hybrid conformal field theories, JHEP, 05, 043, (2014) · Zbl 1333.81312
[4] Greene, BR; Morrison, DR; Vafa, C., A geometric realization of confinement, Nucl. Phys., B 481, 513, (1996) · Zbl 0925.32006
[5] Addington, N.; Aspinwall, PS, Categories of massless D-branes and del Pezzo surfaces, JHEP, 07, 176, (2013) · Zbl 1342.83313
[6] M.R. Douglas and G.W. Moore, D-branes, quivers and ALE instantons, hep-th/9603167 [INSPIRE].
[7] I.M. Gelfand, M.M. Kapranov and A.V. Zelevinski, Discriminants, resultants and multidimensional determinants, Birkhäuser, Boston U.S.A. (1994).
[8] Aspinwall, PS; Greene, BR; Morrison, DR, Measuring small distances in N = 2 sigma models, Nucl. Phys., B 420, 184, (1994) · Zbl 0990.81689
[9] Aspinwall, PS, Enhanced gauge symmetries and K3 surfaces, Phys. Lett., B 357, 329, (1995)
[10] Candelas, P.; Ossa, X.; Font, A.; Katz, SH; Morrison, DR, Mirror symmetry for two-parameter models (I), Nucl. Phys., B 416, 481, (1994) · Zbl 0899.14017
[11] P.S. Aspinwall, D-branes on Calabi-Yau manifolds, in J.M. Maldacena ed., Progress in string theory. TASI 2003 lecture notes, World Scientific (2005), pp. 1-152 [hep-th/0403166] [INSPIRE].
[12] R. Rouquier, Categorification of sl_{2}and braid groups, in Trends in representation theory of algebras and related topics, Contemp. Math.406 (2006) 137, American Mathematical Society, Providence U.S.A. (2006).
[13] R. Anno, Spherical functors, arXiv:0711.4409. · Zbl 1374.14015
[14] N. Addington, New derived symmetries of some hyperkähler varieties, arXiv:1112.0487. · Zbl 1372.14009
[15] Horja, RP, Derived category automorphisms from mirror symmetry, Duke Math. J., 127, 1, (2005) · Zbl 1075.18006
[16] Seidel, P.; Thomas, RP, Braid group actions on derived categories of coherent sheaves, Duke Math. J., 108, 37, (2001) · Zbl 1092.14025
[17] Aspinwall, PS; Douglas, MR, D-brane stability and monodromy, JHEP, 05, 031, (2002)
[18] Eisenbud, D., Homological algebra on a complete intersection, with an application to group representations, Trans. Amer. Math. Soc., 260, 35, (1980) · Zbl 0444.13006
[19] D. Orlov, Derived categories of coherent sheaves and triangulated categories of singularities, in Algebra, arithmetic, and geometry: in honor of Yu.I. Manin, vol. II, Progr. Math.270 (2009) 503, Birkhäuser, Boston U.S.A. (2009) [math.AG/0503632]. · Zbl 1200.18007
[20] M. Herbst, K. Hori and D. Page, Phases of[InlineMediaObject not available: see fulltext.]theories in 1+1 dimensions with boundary, arXiv:0803.2045 [INSPIRE].
[21] Aspinwall, PS, Topological D-branes and commutative algebra, Commun. Num. Theor. Phys., 3, 445, (2009) · Zbl 1358.81146
[22] Segal, E., Equivalences between GIT quotients of Landau-Ginzburg B-models, Commun. Math. Phys., 304, 411, (2011) · Zbl 1216.81122
[23] L.L. Avramov and D.R. Grayson, Resulutions and cohomology over complete intersections, in D. Eisenbud et al. eds., Computations in algebraic geometry with Macaulay 2, Algorithms and Computations in Mathematics 8, pp. 131-178, Springer-Verlag (2001). · Zbl 0994.13006
[24] D. Halpern-Leistner and I. Shipman, Autoequivalences of derived categories via geometric invariant theory, arXiv:1303.5531. · Zbl 1371.14023
[25] Morrison, DR; Plesser, MR, Summing the instantons: quantum cohomology and mirror symmetry in toric varieties, Nucl. Phys., B 440, 279, (1995) · Zbl 0908.14014
[26] M. Van den Bergh, Non-commutative crepant resolutions, in The legacy of Niels Henrik Abel: the Abel bicentennial, Oslo 2002, Springer (2004), pp. 749-770 [math.RA/0211064].
[27] Aspinwall, PS; Morrison, DR, Quivers from matrix factorizations, Commun. Math. Phys., 313, 607, (2012) · Zbl 1250.81076
[28] Avram, AC; Kreuzer, M.; Mandelberg, M.; Skarke, H., The web of Calabi-Yau hypersurfaces in toric varieties, Nucl. Phys., B 505, 625, (1997) · Zbl 0896.14026
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.