Bergner, Julia E.; Osorno, Angélica M.; Ozornova, Viktoriya; Rovelli, Martina; Scheimbauer, Claudia I. The edgewise subdivision criterion for 2-Segal objects. (English) Zbl 1427.18005 Proc. Am. Math. Soc. 148, No. 1, 71-82 (2020). The edgewise subdivision of a simplical space is a construction leaving the geometric realization unchanged but having the effect of decomposition of the simplicial space into more simplices. It appeared first in [G. Segal, Invent. Math. 21, 213–221 (1973; Zbl 0267.55020)], while F. Waldhausen [Lect. Notes Math. 1126, 318–419 (1985; Zbl 0579.18006)] used this construction to establish the equivalence of the \(S_{\bullet}\)-construction and the \(Q\)-construction in algebraic \(K\)-theory. This paper applies this construction to the \(2\)-Segal spaces of [T. Dyckerhoff and M. Kapranov, Higher Segal spaces (to appear). Cham: Springer (2019; Zbl 1459.18001)], closely related with the decomposition spaces of [I. Gálvez-Carrillo et al., Adv. Math. 331, 952–1015 (2018; Zbl 1403.00023); ibid. 333, 1242–1292 (2018; Zbl 1403.18016); ibid. 334, 544–584 (2018; Zbl 1403.18017)]. In [J. E. Bergner et al., Topology Appl. 235, 445–484 (2018; Zbl 1422.55036); “2-Segal objects and the Waldhausen construction”, arXiv:1809.10924] the authors demonstrated that any \(2\)-Segal space abdiding by a unitality condition comes from such a construction for a suitably general input. This paper lies in the more general context of \(2\)-Segal objects in any combinatorial model category. The main result (Theorem 2.11) goes as follows:Theorem. Let \(X\) be a simplicial object in a combinatorial model category \(\mathcal{M}\). Then \(X\) is a \(2\)-Segal object iff its edgewise subdivision \(\mathrm{esd}(X)\) is a Segal object. Reviewer: Hirokazu Nishimura (Tsukuba) Cited in 3 Documents MSC: 18C40 Structured objects in a category (group objects, etc.) 18N50 Simplicial sets, simplicial objects 19D10 Algebraic \(K\)-theory of spaces 55U10 Simplicial sets and complexes in algebraic topology Citations:Zbl 0267.55020; Zbl 0579.18006; Zbl 1403.00023; Zbl 1403.18016; Zbl 1403.18017; Zbl 1422.55036; Zbl 1459.18001 PDF BibTeX XML Cite \textit{J. E. Bergner} et al., Proc. Am. Math. Soc. 148, No. 1, 71--82 (2020; Zbl 1427.18005) Full Text: DOI arXiv OpenURL References: [1] Clark Barwick, On the \textnormalQ-construction for exact \(\infty \)-categories, arXiv:1301.4725, 2013. [2] Barwick, Clark, On the algebraic \(K\)-theory of higher categories, J. Topol., 9, 1, 245-347 (2016) · Zbl 1364.19001 [3] Blumberg, Andrew J.; Gepner, David; Tabuada, Gon\c{c}alo, A universal characterization of higher algebraic \(K\)-theory, Geom. Topol., 17, 2, 733-838 (2013) · Zbl 1267.19001 [4] \([BOO^+18\) a]BOORS2 Julia E. Bergner, Ang\'elica M. Osorno, Viktoriya Ozornova, Martina Rovelli, and Claudia I. Scheimbauer, 2-Segal objects and the Waldhausen construction, arXiv:1809.10924, 2018. · Zbl 1422.55036 [5] Bergner, Julia E.; Osorno, Ang\'{e}lica M.; Ozornova, Viktoriya; Rovelli, Martina; Scheimbauer, Claudia I., 2-Segal sets and the Waldhausen construction, Topology Appl., 235, 445-484 (2018) · Zbl 1422.55036 [6] Clark Barwick and John Rognes, On the \textnormalQ-construction for exact \(\infty \)-categories, http://www.maths.ed.ac.uk/ cbarwick/papers/qconstr.pdf. [7] Tobias Dyckerhoff and Mikhail Kapranov, Higher Segal spaces I, arXiv:1212.3563, 2012. · Zbl 1459.18001 [8] Imma G\'alvez-Carrillo, Joachim Kock, and Andrew Tonks, Cohomology of decomposition spaces, in preparation. · Zbl 1403.18017 [9] G\'{a}lvez-Carrillo, Imma; Kock, Joachim; Tonks, Andrew, Decomposition spaces, incidence algebras and M\"{o}bius inversion I: Basic theory, Adv. Math., 331, 952-1015 (2018) · Zbl 1403.00023 [10] Grayson, Daniel R., Exterior power operations on higher \(K\)-theory, \(K\)-Theory, 3, 3, 247-260 (1989) · Zbl 0701.18007 [11] Hatcher, Allen, Algebraic topology, xii+544 pp. (2002), Cambridge University Press, Cambridge · Zbl 1044.55001 [12] Haugseng, Rune, Iterated spans and classical topological field theories, Math. Z., 289, 3-4, 1427-1488 (2018) · Zbl 1400.18006 [13] Lurie, Jacob, Higher topos theory, Annals of Mathematics Studies 170, xviii+925 pp. (2009), Princeton University Press, Princeton, NJ · Zbl 1175.18001 [14] Jacob Lurie, Higher algebra, http://www.math.harvard.edu/ lurie/papers/HA.pdf, (2017). · Zbl 1175.18001 [15] Quillen, Daniel G., Homotopical algebra, Lecture Notes in Mathematics, No. 43, iv+156 pp. (not consecutively paged) pp. (1967), Springer-Verlag, Berlin-New York [16] Quillen, Daniel, Higher algebraic \(K\)-theory. I. Algebraic \(K\)-theory, I: Higher \(K\)-theories, Proc. Conf., Battelle Memorial Inst., Seattle, Wash., 1972, 85-147. Lecture Notes in Math., Vol. 341 (1973), Springer, Berlin [17] Rezk, Charles, A model for the homotopy theory of homotopy theory, Trans. Amer. Math. Soc., 353, 3, 973-1007 (2001) · Zbl 0961.18008 [18] Segal, Graeme, Configuration-spaces and iterated loop-spaces, Invent. Math., 21, 213-221 (1973) · Zbl 0267.55020 [19] Katerina Velcheva, Generalized edgewise subdivisions, arXiv:1404.3416, 2014. [20] Waldhausen, Friedhelm, Algebraic \(K\)-theory of spaces. Algebraic and geometric topology, New Brunswick, N.J., 1983, Lecture Notes in Math. 1126, 318-419 (1985), Springer, Berlin [21] Weibel, Charles A., The \(K\)-book: An introduction to algebraic \(K\)-theory, Graduate Studies in Mathematics 145, xii+618 pp. (2013), American Mathematical Society, Providence, RI · Zbl 1273.19001 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.