×

Weighting by iteration: iterations of \(n\) variables means based on subdivisions of the standard \((n-1)\)-simplex. (English) Zbl 1481.26027

The author parametrizes means with the \((n-1)\) simplex \(\Delta_{n-1}=\{(w_1,w_2,\ldots,w_n)\in\mathbb{R}^n :w_i\geq 0, \sum_1^n w_i=1\}\). After an introduction of some concepts from simplicial homology and iterated systems of functions (termed ISF), the author considers lower means and studies their properties. Following this comes the barycentric iteration of means via a two step algorithm by first making an assignment on the face of each \(\Delta_{n-1}\) and iteratively applying the mean from previous assignments via \(M^{\frac{v_1+\cdots+v_n}{n}}(x)=M(M^{v_1}(x),\ldots,M^{v_n}(x))\) and studies the properties of these iterated means. It is shown that for symmetric means the orientation of the simplex does not matter. Next, weighting procedures in the iteration as well as weighting based on other subdivision in the manner of H. Freudenthal [Ann. Math. (2) 43, 580–582 (1942; Zbl 0060.40701)] and properties of extension of the means are studied. The results are compared with those studied previously by other authors, in particular it is shown when the new methods coincide with J. Aczél’s [Bull. Am. Math. Soc. 54, 392–400 (1948; Zbl 0030.02702)] weighting procedure for means and turn out to be continuous and scale invariant.

MSC:

26E60 Means
39B12 Iteration theory, iterative and composite equations
54C20 Extension of maps
54C30 Real-valued functions in general topology
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Aczél, J., On mean values, Bulletin of the American Mathematical Society, 54, 392-400 (1948) · Zbl 0030.02702
[2] Adhikari, MR, Basic Algebraic Topology and its Applications (2016), New York: Springer (India), New York · Zbl 1354.55001
[3] Aumann, G., Aufbau von Mittelwerten mehrerer Argumente I, Mathematische Annalen, 109, 235-253 (1933) · Zbl 0008.05601
[4] Aumann, G., Aufbau von Mittelwerten mehrerer Argumente II (Analytische Mittelwerte), Mathematische Annalen, 111, 713-730 (1935) · Zbl 0012.25205
[5] Berman, A., and Plemmons, R. J. 1994. Nonnegative Matrices in the Mathematical Sciences, Siam, Classics in Applied Mathematics, vol. 9, Philadelphia. · Zbl 0815.15016
[6] Berrone, LR, A dynamical characterization of quasilinear means, Aequationes Mathematicae, 84, 1, 51-70 (2012) · Zbl 1257.26027
[7] Berrone, LR, The Aumann functional equation for general weighting procedures, Aequationes Mathematicae, 89, 4, 1051-1073 (2015) · Zbl 1338.39033
[8] Berrone, L. R. 2016. Weighting general means I. Abstract theory(manuscript).
[9] Berrone, L. R. 2016. Weighting general means II. Constructive theory(manuscript).
[10] Berrone, LR, Weighting by iteration: The case of Ryll-Nardzewski’s iterations, Results in Mathematics, 71, 3-4, 535-567 (2017) · Zbl 1373.26034
[11] Berrone, LR, Reducible means, Journal of Analysis, 27, 943-984 (2019) · Zbl 1428.26061
[12] Berrone, LR; Lombardi, AL, A note on equivalence of means, Publicationes Mathematicae Debrecen, 58, 1-2, 49-56 (2001) · Zbl 0973.39016
[13] Berrone, LR; Sbérgamo, GE, Aczél’s iterations for discontinuous or non strict means, Journal of Analysis, 25, 1, 1-27 (2017) · Zbl 1368.26031
[14] Bielecki, A. 1995. Iterated function system analogues on compact metric spaces and their attractors, 187-192. XXXI I: Universitatis Iagellonicae Acta Mathematica · Zbl 0831.58030
[15] Bondy, JA; Murty, USR, Graph Theory, Springer, Graduate Text in Mathematics (2008), Berlin: Springer, Berlin
[16] Bullen, PS, Handbook of Means and Their Inequalities (2010), Dordrecht: Kluwer Academic Publishers, Dordrecht · Zbl 1035.26024
[17] Bullen, PS; Mitrinović, DS; Vasić, PM, Means and Their Inequalities (1988), Dordrecht: D. Reidel Publishing Company, Dordrecht · Zbl 0422.26009
[18] Costantini, C.; Marcone, A., Extensions of functions which preserve the continuity on the original domain, Topology and its Applications, 103, 131-153 (2000) · Zbl 0986.54025
[19] Dang, Ch, Triangulations and Simplicial Methods, Springer, Lectures Notes in Economics and Mathematical Systems (1995), Berlin: Springer, Berlin · Zbl 0841.90111
[20] Diestel, R., Graph Theory, Springer, Graduate Text in Mathematics (2000), Berlin: Springer, Berlin · Zbl 0945.05002
[21] Edalat, A., Power domains and iterated functions systems, Information and Computer, 124, 182-197 (1996) · Zbl 0916.54014
[22] Edelsbrunnert, H.; Graysont, DR, Edgewise subdivision of a simplex, Discrete & Computational Geometry, 24, 4, 704-719 (2000) · Zbl 0968.51016
[23] Engelking, R., General Topology, Heldermann, Sigma Series in Pure Mathematics (1989), Berlin: Springer, Berlin · Zbl 0684.54001
[24] Falconer, K., Fractal Geometry Mathematical Foundations and Applications (2003), Chichester: Wiley, Chichester · Zbl 1060.28005
[25] Freudenthal, H.; Springer, TA; van Dalen, D., Simplizialzerlegungen von beshr änkter Flachheit, Ann. Math., II. Ser. 43(3), 1942, pp. 580-582. Also, Hans Freudenthal (2009), Zürich: Selecta: European Mathematical Society Publishing House, Zürich · Zbl 1186.01026
[26] Horwitz, A., Invariant means, Journal of Mathematical Analysis and Applications, 270, 499-518 (2002) · Zbl 1004.26020
[27] Kiss, T.; Páles, Z., Reducible means and reducible inequalities, Aequationes Mathematicae, 91, 3, 505-525 (2017) · Zbl 1370.26044
[28] Krantz, S.G., and H.R. Parks. 2003. The Implicit Function Theorem. Theory and Applications. Birkhäuser, Boston: History.
[29] Lothaire, M., Combinatorics on Words (1983), Cambridge: Cambridge University Press, Cambridge · Zbl 0514.20045
[30] Lothaire, M., Algebraic Combinatorics on Words (2002), Cambridge: Cambridge University Press, Cambridge · Zbl 1001.68093
[31] Grabisch, M.; Marichal, J-L; Mesiar, R.; Pap, E., Aggregation Functions, Encyclopaedia of Mathematics and Its Applications 127 (2009), Cambridge: Cambridge University Press, Cambridge · Zbl 1196.00002
[32] Matkowski, J., On weighted extensions of Bajraktarević means, Sarajevo Journals of Mathematics, 6, 19, 169-188 (2010) · Zbl 1216.26014
[33] Maunder, CRF, Algebraic Topology (1980), Cambridge: Cambridge University Press, Cambridge · Zbl 0435.55001
[34] Raïssouli, M., Parameterized logarithmic mean, International Journal of Mathematics Analysis, 6, 18, 863-869 (2012) · Zbl 1250.26033
[35] Raïssouli, M., and Sándor, J. 2013. On a method of construction of new means with applications. Journal of Inequalities and Applications 89. · Zbl 1285.26050
[36] Richards, KC; Tiedeman, HC, A note on weighted identric and logarithmic means, Journal of Inequalities in Pure and Applied Mathematics, 7, 5 (2006) · Zbl 1232.26016
[37] Royden, HL, Real Analysis (1968), London: Macmillan, London · Zbl 0704.26006
[38] Sbérgamo, G. E. 2017. Ponderaciones de medias de \(3\) variables(unpublished manuscript).
[39] Sbérgamo, GE, Aczél’s iterations for three-variable means, Acta Mathematica Hungarica, 161, 16-30 (2020) · Zbl 1474.26171
[40] Seneta, E., Non-negative Matrices and Markov Chains (2006), New York: Springer, New York · Zbl 1099.60004
[41] Solís, FJ; Ojeda-Gomez, E., Invariant compact sets of nonexpansive iterated function systems, Asian Research Journal of Mathematics, 3, 4, 1-10 (2017)
[42] Spanier, EH, Algebraic Topology (1966), New York: McGraw-Hill, New York · Zbl 0145.43303
[43] Stanley, RS, Combinatorics and Conmutative Algebra (1996), Basel: Birkhäuser, Basel
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.