Blumberg, Andrew J.; Gepner, David; Tabuada, Gonçalo \(K\)-theory of endomorphisms via noncommutative motives. (English) Zbl 1375.19006 Trans. Am. Math. Soc. 368, No. 2, 1435-1465 (2016). Summary: We extend the \( K\)-theory of endomorphisms functor from ordinary rings to (stable) \( \infty \)-categories. We show that \( \mathrm{KEnd}(-)\) descends to the category of noncommutative motives, where it is corepresented by the noncommutative motive associated to the tensor algebra \( \mathbb{S}[t]\) of the sphere spectrum \( \mathbb{S}\). Using this corepresentability result, we classify all the natural transformations of \( \mathrm{KEnd}(-)\) in terms of an integer plus a fraction between polynomials with constant term \( 1\); this solves a problem raised by Almkvist in the seventies. Finally, making use of the multiplicative coalgebra structure of \( \mathbb{S}[t]\), we explain how the (rational) Witt vectors can also be recovered from the symmetric monoidal category of noncommutative motives. Along the way we show that the \( K_0\)-theory of endomorphisms of a connective ring spectrum \( R\) equals the \( K_0\)-theory of endomorphisms of the underlying ordinary ring \( \pi _0R\). Cited in 2 Documents MSC: 19D10 Algebraic \(K\)-theory of spaces 19D25 Karoubi-Villamayor-Gersten \(K\)-theory 19D55 \(K\)-theory and homology; cyclic homology and cohomology 18D20 Enriched categories (over closed or monoidal categories) 55N15 Topological \(K\)-theory Keywords:\(K\)-theory of endomorphisms; noncommutative motives; stable \(\infty\)-categories; Witt vectors PDF BibTeX XML Cite \textit{A. J. Blumberg} et al., Trans. Am. Math. Soc. 368, No. 2, 1435--1465 (2016; Zbl 1375.19006) Full Text: DOI arXiv OpenURL References: [1] Almkvist, Gert, \(K\)-theory of endomorphisms, J. Algebra, 55, 2, 308-340 (1978) · Zbl 0414.18009 [2] Almkvist, Gert, The Grothendieck ring of the category of endomorphisms, J. Algebra, 28, 375-388 (1974) · Zbl 0281.18012 [3] Antieau, Benjamin; Gepner, David, Brauer groups and \'etale cohomology in derived algebraic geometry, Geom. Topol., 18, 2, 1149-1244 (2014) · Zbl 1308.14021 [4] [Barwick] C. Barwick, \newblock On the algebraic K-theory of higher categories. \newblock Preprint, arXiv:1204.3607. [5] [Barwickexact] C. Barwick, \newblock On exact \(\i \)-categories and the Theorem of the Heart. \newblock Preprint, arXiv:1212.5232. [6] [BarwickQ] C. Barwick, \newblock On the Q-construction for exact \(\i \)-categories. \newblock Preprint, arXiv:1301.4725. [7] Betley, Stanislaw; Schlichtkrull, Christian, The cyclotomic trace and curves on \(K\)-theory, Topology, 44, 4, 845-874 (2005) · Zbl 1080.19005 [8] Blumberg, Andrew J.; Gepner, David; Tabuada, Gon{\c{c}}alo, A universal characterization of higher algebraic \(K\)-theory, Geom. Topol., 17, 2, 733-838 (2013) · Zbl 1267.19001 [9] Blumberg, Andrew J.; Gepner, David; Tabuada, Gon{\c{c}}alo, Uniqueness of the multiplicative cyclotomic trace, Adv. Math., 260, 191-232 (2014) · Zbl 1297.19002 [10] Bloch, Spencer, Algebraic \(K\)-theory and crystalline cohomology, Inst. Hautes \'Etudes Sci. Publ. Math., 47, 187-268 (1978) (1977) · Zbl 0388.14010 [11] Blumberg, Andrew J.; Mandell, Michael A., The localization sequence for the algebraic \(K\)-theory of topological \(K\)-theory, Acta Math., 200, 2, 155-179 (2008) · Zbl 1149.18008 [12] Blumberg, Andrew J.; Mandell, Michael A., Algebraic \(K\)-theory and abstract homotopy theory, Adv. Math., 226, 4, 3760-3812 (2011) · Zbl 1217.19003 [13] Blumberg, Andrew J.; Mandell, Michael A., Localization theorems in topological Hochschild homology and topological cyclic homology, Geom. Topol., 16, 2, 1053-1120 (2012) · Zbl 1282.19004 [14] Bondarko, M. V., Weight structures vs. \(t\)-structures; weight filtrations, spectral sequences, and complexes (for motives and in general), J. K-Theory, 6, 3, 387-504 (2010) · Zbl 1303.18019 [15] Dwyer, W. G.; Kan, D. M., Simplicial localizations of categories, J. Pure Appl. Algebra, 17, 3, 267-284 (1980) · Zbl 0485.18012 [16] Dwyer, W. G.; Kan, D. M., Calculating simplicial localizations, J. Pure Appl. Algebra, 18, 1, 17-35 (1980) · Zbl 0485.18013 [17] Dwyer, W. G.; Kan, D. M., Function complexes for diagrams of simplicial sets, Nederl. Akad. Wetensch. Indag. Math., 45, 2, 139-147 (1983) · Zbl 0524.55021 [18] Dwyer, William G.; Hirschhorn, Philip S.; Kan, Daniel M.; Smith, Jeffrey H., Homotopy limit functors on model categories and homotopical categories, Mathematical Surveys and Monographs 113, viii+181 pp. (2004), American Mathematical Society, Providence, RI · Zbl 1072.18012 [19] Elmendorf, A. D.; Kriz, I.; Mandell, M. A.; May, J. P., Rings, modules, and algebras in stable homotopy theory, with an appendix by M. Cole. Mathematical Surveys and Monographs 47, xii+249 pp. (1997), American Mathematical Society, Providence, RI · Zbl 0894.55001 [20] [Fiore] T. Fiore and W. Lueck, \newblockWaldhausen additivity: Classical and quasicategorical. \newblock Preprint, arXiv:1207.6613. [21] [Glas] S. Glasman, Day convolution for \(\infty \)-categories, Preprint, arXiv:1308.4940. · Zbl 1375.18041 [22] Grayson, Daniel R., \(K_2\) and the \(K\)-theory of automorphisms, J. Algebra, 58, 1, 12-30 (1979) · Zbl 0413.18011 [23] Grayson, Daniel R., The \(K\)-theory of endomorphisms, J. Algebra, 48, 2, 439-446 (1977) · Zbl 0413.18010 [24] Grayson, Daniel R., Grothendieck rings and Witt vectors, Comm. Algebra, 6, 3, 249-255 (1978) · Zbl 0383.13009 [25] [SGA6] A. Grothendieck et al., \newblock SGA 6. [26] Hazewinkel, Michiel, Operations in the \(K\)-theory of endomorphisms, J. Algebra, 84, 2, 285-304 (1983) · Zbl 0534.13010 [27] Hazewinkel, Michiel, Witt vectors. I. Handbook of algebra. Vol. 6, Handb. Algebr. 6, 319-472 (2009), Elsevier/North-Holland, Amsterdam · Zbl 1221.13036 [28] Hesselholt, Lars; Madsen, Ib, Cyclic polytopes and the \(K\)-theory of truncated polynomial algebras, Invent. Math., 130, 1, 73-97 (1997) · Zbl 0884.19004 [29] Hesselholt, Lars, On the \(p\)-typical curves in Quillen’s \(K\)-theory, Acta Math., 177, 1, 1-53 (1996) · Zbl 0892.19003 [30] Hovey, Mark, Model categories, Mathematical Surveys and Monographs 63, xii+209 pp. (1999), American Mathematical Society, Providence, RI · Zbl 0909.55001 [31] Lurie, Jacob, Higher topos theory, Annals of Mathematics Studies 170, xviii+925 pp. (2009), Princeton University Press, Princeton, NJ · Zbl 1175.18001 [32] [HA] J. Lurie, \newblockHigher algebra. \newblock Preprint, available at www.math.harvard.edu/lurie. [33] Lindenstrauss, Ayelet; McCarthy, Randy, On the algebraic K-theory of formal power series, J. K-Theory, 10, 1, 165-189 (2012) · Zbl 1257.19002 [34] Mandell, M. A.; Shipley, B., A telescope comparison lemma for THH, Topology Appl., 117, 2, 161-174 (2002) · Zbl 1098.55501 [35] Neeman, Amnon, Triangulated categories, Annals of Mathematics Studies 148, viii+449 pp. (2001), Princeton University Press, Princeton, NJ · Zbl 0974.18008 [36] Quillen, Daniel, Higher algebraic \(K\)-theory. I. Algebraic \(K\)-theory, I: Higher \(K\)-theories, Proc. Conf., Battelle Memorial Inst., Seattle, Wash., 1972, 85-147 (1973), Lecture Notes in Math., Vol. 341, Springer, Berlin · Zbl 0292.18004 [37] [Schwede] S. Schwede, \newblockSymmetric spectra. \newblock Preprint, http://www.math.uni-bonn.de/ schwede/. [38] Schwede, Stefan; Shipley, Brooke, Stable model categories are categories of modules, Topology, 42, 1, 103-153 (2003) · Zbl 1013.55005 [39] Stienstra, Jan, Cartier-Dieudonn\'e theory for Chow groups, J. Reine Angew. Math., 355, 1-66 (1985) · Zbl 0545.14013 [40] Stienstra, Jan, Operations in the higher \(K\)-theory of endomorphisms. Current trends in algebraic topology, Part 1, London, Ont., 1981, CMS Conf. Proc. 2, 59-115 (1982), Amer. Math. Soc., Providence, R.I. [41] Tabuada, Gon{\c{c}}alo, Homotopy theory of spectral categories, Adv. Math., 221, 4, 1122-1143 (2009) · Zbl 1168.55008 [42] Thomason, R. W.; Trobaugh, Thomas, Higher algebraic \(K\)-theory of schemes and of derived categories. The Grothendieck Festschrift, Vol. III, Progr. Math. 88, 247-435 (1990), Birkh\"auser Boston, Boston, MA [43] Waldhausen, Friedhelm, Algebraic \(K\)-theory of spaces. Algebraic and geometric topology, New Brunswick, N.J., 1983, Lecture Notes in Math. 1126, 318-419 (1985), Springer, Berlin [44] [Witt] E. Witt. \newblock Theorie der quadratischen Formen in beliebigen K\"orpern. \newblock J. Reine Angew. Math. 176 (1937), 31-44. · Zbl 0015.05701 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.