×

Successive minima and slopes of hermitian vector bundles over number fields. (English) Zbl 1100.14513

Summary: The purpose of this paper is to clarify the relationship between the successive minima and the slopes of a hermitian vector bundle on the spectrum of the ring of integers of an algebraic number field. The main result is a lower and an upper bound for each successive minimum in terms of the corresponding slope.

MSC:

14G40 Arithmetic varieties and schemes; Arakelov theory; heights
14G25 Global ground fields in algebraic geometry
14F05 Sheaves, derived categories of sheaves, etc. (MSC2010)
Full Text: DOI

References:

[1] Bombieri, E.; Vaaler, J., On Siegel’s lemma, Invent. Math., 73, 11-32 (1983) · Zbl 0533.10030
[2] Bost, J.-B., Périodes et isogénies des variétés abéliennes sur les corps de nombres, Astérisque, 237, 115-161 (1996) · Zbl 0936.11042
[3] Cassels, J. W.S., An Introduction to the Geometry of Numbers (1971), Springer: Springer Berlin · Zbl 0209.34401
[4] Grayson, D. R., Reduction theory using semistability, Comment. Math. Helv., 59, 600-634 (1984) · Zbl 0564.20027
[5] Harder, G.; Narasimhan, M. S., On the cohomology groups of moduli spaces of vector bundles on curves, Math. Ann., 212, 215-248 (1975) · Zbl 0324.14006
[6] Lang, S., Introduction to Arakelov Theory (1988), Springer: Springer New York · Zbl 0667.14001
[7] Neukirch, J., Algebraic Number Theory (1999), Springer: Springer Berlin · Zbl 0956.11021
[8] Soulé, C., Hermitian vector bundles on arithmetic varieties, Proc. Symp. Pure Math., 62, Part 1, 383-417 (1997) · Zbl 0926.14011
[9] Stuhler, U., Eine Bemerkung zur Reduktionstheorie quadratischer Formen, Arch. Math., 27, 604-610 (1974) · Zbl 0338.10024
[10] Szpiro, L., Degrés, intersection, hauteurs, Astérisque, 127, 11-28 (1985) · Zbl 1182.11029
[11] Thunder, J. L., (Remarks on Adelic Geometry of Numbers, Number Theory for the Millennium III (2002), A.K. Peters: A.K. Peters Natick, MA), 253-259 · Zbl 1042.11044
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.