Strong shift equivalence and algebraic \(K\)-theory. (English) Zbl 1439.19003

Summary: For a semiring \(\mathcal{R}\), the relations of shift equivalence over \(\mathcal{R}\) (SE-\(\mathcal{R}\)) and strong shift equivalence over \(\mathcal{R}\) (SSE-\(\mathcal{R}\)) are natural equivalence relations on square matrices over \(\mathcal{R}\), important for symbolic dynamics. When \(\mathcal{R}\) is a ring, we prove that the refinement of SE-\(\mathcal{R}\) by SSE-\(\mathcal{R}\), in the SE-\(\mathcal{R}\) class of a matrix \(A\), is classified by the quotient \(NK_1(\mathcal{R})/E(A,\mathcal{R})\) of the algebraic K-theory group \(NK_1(\mathcal{R})\). Here, \(E(A,\mathcal{R})\) is a certain stabilizer group, which we prove must vanish if \(A\) is nilpotent or invertible. For this, we first show for any square matrix \(A\) over \(\mathcal{R}\) that the refinement of its SE-\(\mathcal{R}\) class into SSE-\(\mathcal{R}\) classes corresponds precisely to the refinement of the \(\operatorname{GL}(\mathcal{R}[t])\) equivalence class of I-tA into \(\operatorname{El}(\mathcal{R}[t])\) equivalence classes. We then show this refinement is in bijective correspondence with \(NK_1(\mathcal{R})/E(A,\mathcal{R})\). For a general ring \(\mathcal{R}\) and \(A\) invertible, the proof that \(E(A,\mathcal{R})\) is trivial rests on a theorem of Neeman and Ranicki on the K-theory of noncommutative localizations. For \(\mathcal{R}\) commutative, we show \(\cup_{A}E(A,\mathcal{R})=NSK_{1}(\mathcal{R})\); the proof rests on Nenashev’s presentation of \(K_{1}\) of an exact category.


19D10 Algebraic \(K\)-theory of spaces
14C35 Applications of methods of algebraic \(K\)-theory in algebraic geometry
16E20 Grothendieck groups, \(K\)-theory, etc.
37B10 Symbolic dynamics
Full Text: DOI arXiv


[1] H. Bass, Algebraic K-theory, W. A. Benjamin, New York 1968.
[2] L. Block, J. Guckenheimer, M. Misiurewicz and L. S. Young, Periodic points and topological entropy of one-dimensional maps, Global theory of dynamical systems (Evanston 1979), Lecture Notes in Math. 819, Springer, Berlin (1980), 18-34.
[3] M. Boyle, Positive K-theory and symbolic dynamics, Dynamics and randomness (Santiago, 2000), Nonlinear Phenom. Complex Syst. 7, Kluwer Academic, Dordrecht (2002), 31-52. · Zbl 1023.19001
[4] M. Boyle and D. Handelman, Algebraic shift equivalence and primitive matrices, Trans. Amer. Math. Soc. 336 (1993), no. 1, 121-149. · Zbl 0766.15024
[5] M. Boyle, K. H. Kim and F. W. Roush, Path methods for strong shift equivalence of positive matrices, Acta Appl. Math. 126 (2013), 65-115. · Zbl 1325.15027
[6] M. Boyle and S. Schmieding, Finite group extensions of shifts of finite type: K-theory, Parry and Livšic, preprint (2015), .
[7] M. Boyle and S. Schmieding, Strong shift equivalence and algebraic K-theory, preprint (2015), .
[8] M. Boyle and S. Schmieding, The generalized spectral conjecture for nonnegative matrices, Linear Algebra Appl. 498 (2016), 231-243. · Zbl 1334.15082
[9] M. Boyle and M. C. Sullivan, Equivariant flow equivalence for shifts of finite type, by matrix equivalence over group rings, Proc. Lond. Math. Soc. (3) 91 (2005), no. 1, 184-214. · Zbl 1114.37010
[10] M. Boyle and J. B. Wagoner, Positive algebraic K-theory and shifts of finite type, Modern dynamical systems and applications, Cambridge University Press, Cambridge (2004), 45-66. · Zbl 1148.37303
[11] P. M. Cohn, Free rings and their relations, 2nd ed., London Math. Soc. Monogr. Ser. 19, Academic Press, London 1985. · Zbl 0659.16001
[12] E. G. Effros, Dimensions and C^{\ast}-algebras, CBMS Reg. Conf. Ser. Math. 46, American Mathematical Society, Providence 1981.
[13] F. T. Farrell, The nonfiniteness of Nil, Proc. Amer. Math. Soc. 65 (1977), no. 2, 215-216. · Zbl 0365.18021
[14] H. Fitting, Über den Zusammenhang zwischen dem Begriff der Gleichartigkeit zweier Ideale und dem Äquivalenzbegriff der Elementarteilertheorie, Math. Ann. 112 (1936), no. 1, 572-582. · JFM 62.0091.04
[15] S. M. Gersten, Higher K-theory of rings, Algebraic K-theory, I: Higher K-theories (Seattle 1972), Lecture Notes in Math. 341, Springer, Berlin (1973), 3-42. · Zbl 0285.18010
[16] D. Grayson, Higher algebraic K-theory. II, Algebraic K-theory (Evanston 1976), Lecture Notes in Math. 551, Springer, Berlin (1976), 217-240.
[17] D. R. Grayson, The K-theory of endomorphisms, J. Algebra 48 (1977), no. 2, 439-446. · Zbl 0413.18010
[18] D. R. Harmon, NK_{1} of finite groups, Proc. Amer. Math. Soc. 100 (1987), no. 2, 229-232. · Zbl 0625.18003
[19] N. Higson and J. Roe, Analytic K-homology, Oxford Math. Monogr., Oxford University Press, Oxford 2000.
[20] K. H. Kim, F. W. Roush and J. B. Wagoner, Characterization of inert actions on periodic points. I, Forum Math. 12 (2000), no. 5, 565-602. · Zbl 0997.37005
[21] K. H. Kim, F. W. Roush and J. B. Wagoner, Characterization of inert actions on periodic points. II, Forum Math. 12 (2000), no. 6, 671-712. · Zbl 0984.37010
[22] W. Krieger, On dimension functions and topological Markov chains, Invent. Math. 56 (1980), no. 3, 239-250. · Zbl 0431.54024
[23] D. Lind and B. Marcus, An introduction to symbolic dynamics and coding, Cambridge University Press, Cambridge 1995. · Zbl 1106.37301
[24] M. Maller and M. Shub, The integral homology of Smale diffeomorphisms, Topology 24 (1985), no. 2, 153-164. · Zbl 0595.58025
[25] A. Neeman, Noncommutative localisation in algebraic K-theory. II, Adv. Math. 213 (2007), no. 2, 785-819. · Zbl 1126.18006
[26] A. Neeman and A. Ranicki, Noncommutative localisation in algebraic K-theory. I, Geom. Topol. 8 (2004), 1385-1425. · Zbl 1083.18007
[27] A. Nenashev, K_{1} by generators and relations, J. Pure Appl. Algebra 131 (1998), no. 2, 195-212. · Zbl 0923.19001
[28] M. Pollicott, R. Sharp, S. Tuncel and P. Walters, The mathematical research of William Parry FRS, Ergodic Theory Dynam. Systems 28 (2008), no. 2, 321-337. · Zbl 1134.01317
[29] A. Ranicki, High-dimensional knot theory. Algebraic surgery in codimension 2. With an appendix by Elmar Winkelnkemper, Springer Monogr. Math., Springer, New York 1998. · Zbl 0910.57001
[30] J. Rosenberg, Algebraic K-theory and its applications, Grad. Texts in Math. 147, Springer, New York 1994.
[31] A. H. Schofield, Representation of rings over skew fields, London Math. Soc. Lecture Note Ser. 92, Cambridge University Press, Cambridge 1985. · Zbl 0571.16001
[32] C. Sherman, Group representations and algebraic K-theory, Algebraic K-theory. Part I (Oberwolfach 1980), Lecture Notes in Math. 966, Springer, Berlin (1982), 208-243.
[33] T. Vorst, Localization of the K-theory of polynomial extensions, Math. Ann. 244 (1979), no. 1, 33-53. · Zbl 0415.13005
[34] J. B. Wagoner, Strong shift equivalence theory and the shift equivalence problem, Bull. Amer. Math. Soc. (N.S.) 36 (1999), no. 3, 271-296. · Zbl 0927.19001
[35] J. B. Wagoner, Strong shift equivalence and K_{2} of the dual numbers, J. reine angew. Math. 521 (2000), 119-160. · Zbl 0969.37003
[36] J. B. Wagoner, Strong shift equivalence theory, Symbolic dynamics and its applications, Proc. Sympos. Appl. Math. 60, American Mathematical Society, Providence (2004), 121-154. · Zbl 1076.37008
[37] R. B. Warfield, Jr., Stable equivalence of matrices and resolutions, Comm. Algebra 6 (1978), no. 17, 1811-1828. · Zbl 0389.16008
[38] C. A. Weibel, Mayer-Vietoris sequences and module structures on NK_{\ast}, Algebraic K-theory (Evanston 1980), Lecture Notes in Math. 854, Springer, Berlin (1981), 466-493.
[39] C. A. Weibel, An introduction to homological algebra, Cambridge Stud. Adv. Math. 38, Cambridge University Press, Cambridge 1994.
[40] C. A. Weibel, NK_{0} and NK_{1} of the groups C_{4} and D_{4}. Addendum to “Lower algebraic K-theory of hyperbolic 3-simplex reflection groups”, Comment. Math. Helv. 84 (2009), no. 2, 339-349. · Zbl 1167.19003
[41] C. A. Weibel, The K-book, An introduction to algebraic K-theory, Grad. Stud. Math. 145, American Mathematical Society, Providence 2013.
[42] R. F. Williams, Classification of subshifts of finite type, Ann. of Math. (2) 98 (1973), 120-153; erratum, Ann. of Math. (2) 99 (1974), 380-381. · Zbl 0282.58008
[43] R. F. Williams, Strong shift equivalence of matrices in GL(2,\mathbb{Z}), Symbolic dynamics and its applications (New Haven 1991), Contemp. Math. 135, American Mathematical Society, Providence (1992), 445-451. · Zbl 0768.58039
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.