×

The Weierstrass mean. I: The periods of \(\wp (z| e_ 1,e_ 2,e_ 3)\). (English) Zbl 0689.65005

One of the most important computations ever made was due to Gauss. From his computations of arithmetic-geometric means he was led to the study of \(\vartheta\)-functions, modular functions and the transformation theory of elliptic objects, in particular the Landen-transformation. This is translated into Weierstrassian: given \(e_ 1(0)>e_ 2(0)>e_ 3(0)\) with \(e_ 1(0)+e_ 2(0)+e_ 3(0)=0\), sequences \(\{e_ 1(n)\}\), \(\{e_ 2(n)\}\), \(\{e_ 3(n)\}\) are defined which converge quadratically and monotonically to 2W, -W, -W, where \(W=(\pi /\omega)^ 2/12\), \(\omega\) being the real period of \(\pi (z| e_ 1(0),e_ 2(0),e_ 3(0))\).
Reviewer: J.Todd

MSC:

65D20 Computation of special functions and constants, construction of tables
65B10 Numerical summation of series
40A25 Approximation to limiting values (summation of series, etc.)
PDF BibTeX XML Cite
Full Text: DOI EuDML

References:

[1] Abramowitz, M., Stegun, I.A.: (eds.) Handbook of functions. NBS Applied Math. Series, vol. 55, Washington, D. C., U.S. Government Printing Office. 1964 · Zbl 0171.38503
[2] Borwein, J.M., Borwein, P.B.: Pi and the AGM. New York: Wiley 1987 · Zbl 0611.10001
[3] Cox, D.A.: The arithmetic-geometric mean of Gauss. Enseign. Math., II. Ser.,30, 275-330 (1984) · Zbl 0583.33002
[4] Erdélyi, A.: (ed.) Higher transcendental functions, based, in part, on notes left by Harry Bateman, 3 vols. New York: McGraw-Hill 1953-55
[5] Gauss, C.F.: Werke. 12 vols. reprint. Hildesheim: Georg Olms 1981
[6] Geppert, H.: Bestimmung der Anziehung eines elliptischen Ringes. Ostwald’s Klassiker, vol. 225. Leipzig: Akad. Verlag 1927
[7] Geppert, H.: Zur Theorie des arithmetisch-geometrischen Mittels. Math. Ann.99, 162-180 (1928) · JFM 54.0404.03
[8] Chih-Bing, Ling: Evaluation at half periods of Weierstrass’ elliptic function with rectangular primitive period-parallelogram. Math. Comput.14, 67-70 (1960) · Zbl 0098.31401
[9] Schwarz, H.A.: Formeln und Lehrsätze zum Gebrauch der elliptischen Functionen, ed. 2. Berlin Heidelberg New York: Springer 1893 · JFM 25.0757.01
[10] Tannery, J., Molk, J.: Eléments de la théorie des functions elliptiques, 4 vols. Paris: Gauthier-Villars, 1893-1902
[11] Krafft, M., Tricomi, F.G.: Elliptische Funktionen. Leipzig Akad. Verlag 1968
[12] Weierstrass, K.: Mathematische Werke, 7 vols. Berlin: Mayer und Müller 1913
[13] Whittaker, E.T., Watson, G.N.: A course of modern analysis, 4th. ed. Cambridge: University Press 1927 · JFM 53.0180.04
[14] Carlson, B.C.: Landen transformation of integrals. In: Wong, R. (ed.), Asymptotic and computational analysis. Conference in honor of F.W.J. Olver’s 65th birthday. Lecture notes in Pure and Applied Math. Series, vol. 124. New York: Marcel Dekker 1990
[15] Grayson, D.R.: The arithmo-geometric mean. Arch. Math.52, 507-512 (1989) · Zbl 0686.14040
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.