Fulton, William Eigenvalues, invariant factors, highest weights, and Schubert calculus. (English) Zbl 0994.15021 Bull. Am. Math. Soc., New Ser. 37, No. 3, 209-249 (2000). Summary: We describe recent work of A. A. Klyachko [Sel. Math., New Ser. 4, No. 3, 419-445 (1998; Zbl 0915.14010)], B. Totaro [Geometry and analysis on complex manifolds. 242-250 (1994; Zbl 0873.14016)], A. Knutson and T. Tao [J. Am. Math. Soc. 12, NO. 4, 1055-1090 (1999; Zbl 0944.05057)] that characterizes eigenvalues of sums of Hermitian matrices and decomposition of tensor products of representations of \(GL_{n}(\mathbb{C})\). We explain related applications to invariant factors of products of matrices, intersections in Grassmann varieties, and singular values of sums and products of arbitrary matrices. Cited in 9 ReviewsCited in 167 Documents MSC: 15A42 Inequalities involving eigenvalues and eigenvectors 14M15 Grassmannians, Schubert varieties, flag manifolds 05E15 Combinatorial aspects of groups and algebras (MSC2010) 13F10 Principal ideal rings 14C17 Intersection theory, characteristic classes, intersection multiplicities in algebraic geometry 15A18 Eigenvalues, singular values, and eigenvectors 47B07 Linear operators defined by compactness properties 22E46 Semisimple Lie groups and their representations Keywords:eigenvalues; sums of Hermitian matrices; decomposition of tensor products; representationof \(GL_n(\mathbb{C})\); invariant factors; products of matrices; Grassmannian varieties; singular Citations:Zbl 0915.14010; Zbl 0873.14016; Zbl 0944.05057 PDF BibTeX XML Cite \textit{W. Fulton}, Bull. Am. Math. Soc., New Ser. 37, No. 3, 209--249 (2000; Zbl 0994.15021) Full Text: DOI arXiv OpenURL References: [1] S. Agnihotri and C. Woodward, Eigenvalues of products of unitary matrices and quantum Schubert calculus, Math. Res. Lett. 5 (1998), no. 6, 817 – 836. · Zbl 1004.14013 [2] A. R. Amir-Moéz, Extreme properties of eigenvalues of a Hermitian transformation and singular values of the sum and product of linear transformations, Duke Math. J. 23 (1956), 463-476. · Zbl 0071.01601 [3] J. Baik, P. Deift, and K. Johansson, On the distribution of the length of the longest increasing subsequence of random permutations, math.CO/9901118, J. Amer. Math. Soc. 12 (1999), 1119-1178. CMP 99:15 · Zbl 0932.05001 [4] P. Belkale, Local systems on \(\mathbb{P} ^{1}\smallsetminus S\) for \(S\) a finite set, Ph.D. thesis, University of Chicago, 1999. [5] A. Berenstein and R. Sjamaar, Projections of coadjoint orbits and the Hilbert-Mumford criterion, to appear in J. Amer. Math. Soc., math.SG/9810125. · Zbl 0979.53092 [6] F. A. Berezin and I. M. Gel\(^{\prime}\)fand, Some remarks on the theory of spherical functions on symmetric Riemannian manifolds, Amer. Math. Soc. Transl. (2) 21 (1962), 193 – 238. · Zbl 0195.42302 [7] P. Biane, Free probability for probabilists, MSRI preprint 1998-040. · Zbl 1105.46045 [8] A. Buch, The saturation conjecture (after A. Knutson and T. Tao), to appear in l’Enseignement Math., math.C0/9810180. · Zbl 0979.20041 [9] David Carlson, Inequalities relating the degrees of elementary divors within a matrix., Simon Stevin 44 (1970/1971), 3 – 10. · Zbl 0211.04802 [10] Jane Day, Wasin So, and Robert C. Thompson, The spectrum of a Hermitian matrix sum, Linear Algebra Appl. 280 (1998), no. 2-3, 289 – 332. · Zbl 0935.15001 [11] H. Derksen and J. Weyman, Semi-invariants of quivers and saturation for Littlewood-Richardson coefficients, to appear in J. Amer. Math. Soc. · Zbl 0993.16011 [12] J. Deruyts, Essai d’une théorie générale des formes algébriques, Mém. Soc. Roy. Sci. Liège 17 (1892), 1-156. [13] Igor Dolgachev and David Ortland, Point sets in projective spaces and theta functions, Astérisque 165 (1988), 210 pp. (1989) (English, with French summary). · Zbl 0685.14029 [14] A. H. Dooley, J. Repka, and N. J. Wildberger, Sums of adjoint orbits, Linear and Multilinear Algebra 36 (1993), no. 2, 79 – 101. · Zbl 0797.15010 [15] Ky Fan, On a theorem of Weyl concerning eigenvalues of linear transformations, Proc. Nat. Acad. Sci. USA 35 (1949), 652-655. [16] Miroslav Fiedler, Bounds for the determinant of the sum of hermitian matrices, Proc. Amer. Math. Soc. 30 (1971), 27 – 31. · Zbl 0277.15010 [17] Shmuel Friedland, Extremal eigenvalue problems for convex sets of symmetric matrices and operators, Israel J. Math. 15 (1973), 311 – 331. · Zbl 0279.15007 [18] William Fulton, Intersection theory, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 2, Springer-Verlag, Berlin, 1984. · Zbl 0541.14005 [19] William Fulton, Young tableaux, London Mathematical Society Student Texts, vol. 35, Cambridge University Press, Cambridge, 1997. With applications to representation theory and geometry. · Zbl 0878.14034 [20] -, Eigenvalues of sums of Hermitian matrices (after A. Klyachko), Séminaire Bourbaki 845, June, 1998, Astérisque 252 (1998), 255-269. CMP 99:13 [21] William Fulton and Joe Harris, Representation theory, Graduate Texts in Mathematics, vol. 129, Springer-Verlag, New York, 1991. A first course; Readings in Mathematics. · Zbl 0744.22001 [22] I. M. Gel’fand and M. A. Naimark, The relation between the unitary representations of the complex unimodular group and its unitary subgroup, Izvestiya. Akad. Nauk SSSR. Ser. Mat 14 (1950), 239-260 (Russian). [23] Daniel R. Grayson, Reduction theory using semistability, Comment. Math. Helv. 59 (1984), no. 4, 600 – 634. · Zbl 0564.20027 [24] G. J. Heckman, Projections of orbits and asymptotic behavior of multiplicities for compact connected Lie groups, Invent. Math. 67 (1982), no. 2, 333 – 356. · Zbl 0497.22006 [25] Uwe Helmke and Joachim Rosenthal, Eigenvalue inequalities and Schubert calculus, Math. Nachr. 171 (1995), 207 – 225. · Zbl 0815.15012 [26] Joseph Hersch and Bruno Zwahlen, Évaluations par défaut pour une somme quelconque de valeurs propres \?_{\?} d’un opérateur \?=\?+\? à l’aide de valeurs propres \?\(_{1}\) de \? et \?\? de \?, C. R. Acad. Sci. Paris 254 (1962), 1559 – 1561 (French). · Zbl 0112.01502 [27] A. Horn, Doubly stochastic matrices and the diagonal of a rotation matrix, Amer. J. Math. 76 (1954), 620-630. · Zbl 0055.24601 [28] Alfred Horn, Eigenvalues of sums of Hermitian matrices, Pacific J. Math. 12 (1962), 225 – 241. · Zbl 0112.01501 [29] C. R. Johnson, Precise intervals for specific eigenvalues of a product of a positive definite and a Hermitian matrix, Linear Algebra Appl. 117 (1989), 159-164. [30] Charles R. Johnson and Erik A. Schreiner, The relationship between \?\? and \?\?, Amer. Math. Monthly 103 (1996), no. 7, 578 – 582. · Zbl 0865.15010 [31] S. Johnson, The Schubert calculus and eigenvalue inequalities for sums of Hermitian matrices, Ph.D. thesis, University of California. Santa Barbara, 1979. [32] T. Klein, The multiplication of Schur-functions and extensions of \?-modules, J. London Math. Soc. 43 (1968), 280 – 284. · Zbl 0188.09504 [33] Steven L. Kleiman, The transversality of a general translate, Compositio Math. 28 (1974), 287 – 297. · Zbl 0288.14014 [34] Alexander A. Klyachko, Stable bundles, representation theory and Hermitian operators, Selecta Math. (N.S.) 4 (1998), no. 3, 419 – 445. · Zbl 0915.14010 [35] -, Random walks on symmetric spaces and inequalities for matrix spectra, preprint, 1999. [36] A. Knutson, The symplectic and algebraic geometry of Horn’s problem, math.LA/9911088. · Zbl 0981.15010 [37] Allen Knutson and Terence Tao, The honeycomb model of \?\?_{\?}(\?) tensor products. I. Proof of the saturation conjecture, J. Amer. Math. Soc. 12 (1999), no. 4, 1055 – 1090. · Zbl 0944.05097 [38] A. Knutson, T. Tao and C. Woodward, Honeycombs II: facets of the Littlewood-Richardson cone, to appear. · Zbl 1043.05111 [39] Bertram Kostant, Lie algebra cohomology and the generalized Borel-Weil theorem, Ann. of Math. (2) 74 (1961), 329 – 387. · Zbl 0134.03501 [40] Serge Lang, Algebra, 2nd ed., Addison-Wesley Publishing Company, Advanced Book Program, Reading, MA, 1984. · Zbl 0712.00001 [41] L. Lesieur, Les problèmes d’intersection sur une variété de Grassmann, C. R. Acad. Sci. 225 (1947), 916-917. · Zbl 0029.22606 [42] B. V. Lidskii, The proper values of the sum and product of symmetric matrices, Dokl. Akad. Nauk SSSR 74 (1950), 769-772 (Russian). [43] B. V. Lidskiĭ, A polyhedron of the spectrum of the sum of two Hermitian matrices, Funktsional. Anal. i Prilozhen. 16 (1982), no. 2, 76 – 77 (Russian). · Zbl 0495.15006 [44] D. E. Littlewood and A. R. Richardson, Group characters and algebra, Philos. Trans. Roy. Soc. London A 233 (1934), 99-141. · JFM 60.0896.01 [45] I. G. Macdonald, Symmetric functions and Hall polynomials, 2nd ed., Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1995. With contributions by A. Zelevinsky; Oxford Science Publications. · Zbl 0899.05068 [46] D. Mumford, J. Fogarty, and F. Kirwan, Geometric invariant theory, 3rd ed., Ergebnisse der Mathematik und ihrer Grenzgebiete (2) [Results in Mathematics and Related Areas (2)], vol. 34, Springer-Verlag, Berlin, 1994. · Zbl 0797.14004 [47] A. Okounkov, Random matrices and random permutations, math.CO/9903176. · Zbl 1018.15020 [48] L. O’Shea and R. Sjamaar, Moment maps and Riemannian symmetric pairs, to appear in Math. Ann., math.SG/9902059. · Zbl 0985.37056 [49] P. Pragacz and J. Ratajski, Formulas for Lagrangian and orthogonal degeneracy loci; \?-polynomial approach, Compositio Math. 107 (1997), no. 1, 11 – 87. · Zbl 0916.14026 [50] João F. Queiró and Eduardo M. Sá, Singular values and invariant factors of matrix sums and products, Linear Algebra Appl. 225 (1995), 43 – 56. · Zbl 0834.15011 [51] R. C. Riddell, Minimax problems on Grassmann manifolds. Sums of eigenvalues, Adv. in Math. 54 (1984), no. 2, 107 – 199. · Zbl 0599.58016 [52] A. P. Santana, J. F. Queiró and E. Marques de Sá, Group representations and matrix spectral problems, Linear and Multilinear Algebra 46 (1999), 1-23. CMP 2000:02 [53] Frank Sottile, The special Schubert calculus is real, Electron. Res. Announc. Amer. Math. Soc. 5 (1999), 35 – 39. · Zbl 0921.14037 [54] Tin-Yau Tam, A unified extension of two results of Ky Fan on the sum of matrices, Proc. Amer. Math. Soc. 126 (1998), no. 9, 2607 – 2614. · Zbl 0912.15018 [55] G. Philip A. Thijsse, The local invariant factors of a product of holomorphic matrix functions: the order 4 case, Integral Equations Operator Theory 16 (1993), no. 2, 277 – 304. , https://doi.org/10.1007/BF01358957 G. Philip A. Thijsse, Errata: ”The local invariant factors of a product of holomorphic matrix functions: the order 4 case”, Integral Equations Operator Theory 16 (1993), no. 4, 605. , https://doi.org/10.1007/BF01205296 G. Philip A. Thijsse, The local invariant factors of a product of holomorphic matrix functions: the order 4 case, Integral Equations Operator Theory 16 (1993), no. 2, 277 – 304. , https://doi.org/10.1007/BF01358957 G. Philip A. Thijsse, Errata: ”The local invariant factors of a product of holomorphic matrix functions: the order 4 case”, Integral Equations Operator Theory 16 (1993), no. 4, 605. · Zbl 0771.15011 [56] Robert C. Thompson, An inequality for invariant factors, Proc. Amer. Math. Soc. 86 (1982), no. 1, 9 – 11. · Zbl 0503.15007 [57] Robert C. Thompson, Smith invariants of a product of integral matrices, Linear algebra and its role in systems theory (Brunswick, Maine, 1984) Contemp. Math., vol. 47, Amer. Math. Soc., Providence, RI, 1985, pp. 401 – 435. [58] Robert C. Thompson, Invariant factors of algebraic combinations of matrices, Frequency domain and state space methods for linear systems (Stockholm, 1985) North-Holland, Amsterdam, 1986, pp. 73 – 87. · Zbl 0622.15006 [59] Robert C. Thompson and Linda J. Freede, On the eigenvalues of sums of Hermitian matrices, Linear Algebra and Appl. 4 (1971), 369 – 376. · Zbl 0228.15005 [60] R. C. Thompson and S. Therianos, The eigenvalues and singular values of matrix sums and products. VII, Canad. Math. Bull. 16 (1973), 561 – 569. · Zbl 0313.15012 [61] R. C. Thompson and S. Therianos, On a construction of B. P. Zwahlen, Linear and Multilinear Algebra 1 (1973/74), 309 – 325. · Zbl 0305.15009 [62] Burt Totaro, Tensor products of semistables are semistable, Geometry and analysis on complex manifolds, World Sci. Publ., River Edge, NJ, 1994, pp. 242 – 250. · Zbl 0873.14016 [63] H. Weyl, Das asymtotische Verteilungsgesetz der Eigenwerte lineare partieller Differentialgleichungen, Math. Ann. 71 (1912), 441-479. · JFM 43.0436.01 [64] H. Wielandt, An extremum property of sums of eigenvalues, Proc. Amer. Math. Soc. 6 (1955), 106-110. · Zbl 0064.24703 [65] Bo Yan Xi, A general form of the minimum-maximum theorem for eigenvalues of self-conjugate quaternion matrices, Nei Monggol Daxue Xuebao Ziran Kexue 22 (1991), no. 4, 455 – 458 (Chinese, with English summary). · Zbl 1332.15087 [66] A. Zelevinsky, Littlewood-Richardson semigroups, math.CO/9704228, New Perspectives in Algebraic Combinatorics , Cambridge University Press (MSRI Publication), 1999, pp. 337-345. · Zbl 0935.05094 [67] Bruno Peter Zwahlen, Über die Eigenwerte der Summe zweier selbstadjungierter Operatoren, Comment. Math. Helv. 40 (1966), 81 – 116 (German). · Zbl 0135.36501 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.