Manin, Yuri I.; Marcolli, Matilde Homotopy types and geometries below \(\mathrm{Spec}(\mathbb{Z})\). (English) Zbl 07217768 Moree, Pieter (ed.) et al., Dynamics: topology and numbers. Conference, Max Planck Institute for Mathematics, Bonn, Germany, July 2–6, 2018. Providence, RI: American Mathematical Society (AMS). Contemp. Math. 744, 27-56 (2020). Summary: After the first heuristic ideas about “the field of one element” \(\mathbb{F}_1\) and “geometry in characteristics 1” (J. Tits, C. Deninger, M. Kapranov, A. Smirnov et al.), were developed several general approaches to the construction of “geometries below \(\operatorname{Spec}\mathbb{Z}\)”. Homotopy theory and the “the brave new algebra” were taking more and more important places in these developments, systematically explored by B. Toën and M. Vaquié, among others.This article contains a brief survey and some new results on counting problems in this context, including various approaches to zeta-functions and generalised scissors congruences.We introduce a notion of \(\mathbb{F}_1\) structures based on quasi-unipotent endomorphisms on homology. We also consider \(\mathbb{F}_1\) structures based on the integral Bost-Connes algebra and its endomorphisms. In both cases we consider lifts of these structures, via an equivariant Euler charactetristic, to the level of Grothendieck rings and further lifts, via the formalism of assembler categories, to homotopy theoretic spectra.For the entire collection see [Zbl 1448.37001]. Cited in 1 Document MSC: 14A23 Geometry over the field with one element 14-02 Research exposition (monographs, survey articles) pertaining to algebraic geometry 14G40 Arithmetic varieties and schemes; Arakelov theory; heights 14G15 Finite ground fields in algebraic geometry 14G10 Zeta functions and related questions in algebraic geometry (e.g., Birch-Swinnerton-Dyer conjecture) 37P35 Arithmetic properties of periodic points 14C15 (Equivariant) Chow groups and rings; motives 14A22 Noncommutative algebraic geometry 11M41 Other Dirichlet series and zeta functions 55P43 Spectra with additional structure (\(E_\infty\), \(A_\infty\), ring spectra, etc.) 82B10 Quantum equilibrium statistical mechanics (general) Keywords:Weil numbers; quasi-unipotent endomorphisms; Bost-Connes systems; zeta functions; motivic integration; Grothendieck ring of varieties; geometries below \(\mathrm{Spec}\mathbb{Z}\) PDF BibTeX XML Cite \textit{Y. I. Manin} and \textit{M. Marcolli}, Contemp. Math. 744, 27--56 (2020; Zbl 07217768) Full Text: DOI arXiv OpenURL References: [1] Atiyah, M. F., Characters and cohomology of finite groups, Inst. Hautes \'{E}tudes Sci. Publ. Math., 9, 23-64 (1961) [2] Borger, James, The basic geometry of Witt vectors, I: The affine case, Algebra Number Theory, 5, 2, 231-285 (2011) · Zbl 1276.13018 [3] Borger, James, The basic geometry of Witt vectors. II: Spaces, Math. Ann., 351, 4, 877-933 (2011) · Zbl 1251.13019 [4] Borisov, Lev A., The class of the affine line is a zero divisor in the Grothendieck ring, J. Algebraic Geom., 27, 2, 203-209 (2018) · Zbl 1415.14006 [5] Bost, J.-B.; Connes, A., Hecke algebras, type III factors and phase transitions with spontaneous symmetry breaking in number theory, Selecta Math. (N.S.), 1, 3, 411-457 (1995) · Zbl 0842.46040 [6] Bousfield, A. K.; Friedlander, E. M., Homotopy theory of \(\Gamma \)-spaces, spectra, and bisimplicial sets. Geometric applications of homotopy theory (Proc. Conf., Evanston, Ill., 1977), II, Lecture Notes in Math. 658, 80-130 (1978), Springer, Berlin [7] Campbell, Jonathan A., The \(K\)-theory spectrum of varieties, Trans. Amer. Math. Soc., 371, 11, 7845-7884 (2019) · Zbl 1451.19006 [8] J. Campbell, J. Wolfson, I. Zakharevich, Derived \(\)-adic zeta functions, arXiv:1703.09855 (2017). · Zbl 1464.14015 [9] Connes, Alain; Consani, Caterina, Schemes over \(\mathbb{F}_1\) and zeta functions, Compos. Math., 146, 6, 1383-1415 (2010) · Zbl 1201.14001 [10] Connes, Alain; Consani, Caterina, On the arithmetic of the BC-system, J. Noncommut. Geom., 8, 3, 873-945 (2014) · Zbl 1302.11069 [11] Connes, Alain; Consani, Caterina, Absolute algebra and Segal’s \(\Gamma \)-rings: au dessous de \(\overline{{\rm Spec}(\mathbb{Z})} \), J. Number Theory, 162, 518-551 (2016) · Zbl 1409.14046 [12] Connes, Alain; Consani, Caterina; Marcolli, Matilde, Fun with \(\mathbb{F}_1\), J. Number Theory, 129, 6, 1532-1561 (2009) · Zbl 1228.11143 [13] Deligne, P., Cat\'{e}gories tensorielles, Mosc. Math. J., 2, 2, 227-248 (2002) · Zbl 1005.18009 [14] Dress, Andreas W. M.; Siebeneicher, Christian, The Burnside ring of profinite groups and the Witt vector construction, Adv. in Math., 70, 1, 87-132 (1988) · Zbl 0691.13026 [15] Ebeling, Wolfgang; Gusein-Zade, Sabir M., Higher-order spectra, equivariant Hodge-Deligne polynomials, and Macdonald-type equations. Singularities and computer algebra, 97-108 (2017), Springer, Cham · Zbl 1454.57020 [16] Elmendorf, A. D.; Kriz, I.; Mandell, M. A.; May, J. P., Rings, modules, and algebras in stable homotopy theory, Mathematical Surveys and Monographs 47, xii+249 pp. (1997), American Mathematical Society, Providence, RI · Zbl 0894.55001 [17] Franks, John; Shub, Michael, The existence of Morse-Smale diffeomorphisms, Topology, 20, 3, 273-290 (1981) · Zbl 0472.58013 [18] Grayson, Daniel R., \(SK_1\) of an interesting principal ideal domain, J. Pure Appl. Algebra, 20, 2, 157-163 (1981) · Zbl 0467.18004 [19] Guse\u{\i}n-Zade, S. M., Equivariant analogues of the Euler characteristic and Macdonald type formulas, Uspekhi Mat. Nauk. Russian Math. Surveys, 72 72, 1, 1-32 (2017) · Zbl 1376.57039 [20] Hovey, Mark; Shipley, Brooke; Smith, Jeff, Symmetric spectra, J. Amer. Math. Soc., 13, 1, 149-208 (2000) · Zbl 0931.55006 [21] Jin, Seokho; Ma, Wenjun; Ono, Ken; Soundararajan, Kannan, Riemann hypothesis for period polynomials of modular forms, Proc. Natl. Acad. Sci. USA, 113, 10, 2603-2608 (2016) · Zbl 1412.11075 [22] M. Kapranov, A. Smirnov, Cohomology determinants and reciprocity laws: number field case, Unpublished manuscript. [23] M. Kontsevich, Yu. Tschinkel. Specialisation of birational types. arXiv:1708.05699 (2017). [24] Lawson, Tyler, Commutative \(\Gamma \)-rings do not model all commutative ring spectra, Homology Homotopy Appl., 11, 2, 189-194 (2009) · Zbl 1189.55004 [25] Lenstra, H. W., Jr., Grothendieck groups of abelian group rings, J. Pure Appl. Algebra, 20, 2, 173-193 (1981) · Zbl 0467.16016 [26] Le Bruyn, Lieven, Linear recursive sequences and \(\text{\tt{Spec}}(\mathbb{Z})\) over \(\mathbb{F}_1\), Comm. Algebra, 45, 7, 3150-3158 (2017) · Zbl 1375.14013 [27] L. Le Bruyn, Motivic measures and \(F_1\)-geometries, arXiv:1901.10243 (2019). [28] J.F. Lieber, Yu.I. Manin, M. Marcolli, Bost-Connes systems and \(F_1\)-structures in Grothendieck rings, spectra, and Nori motives, arXiv:1901.00020 (2019). [29] Looijenga, Eduard, Motivic measures, Ast\'{e}risque, 276, 267-297 (2002) · Zbl 0996.14011 [30] L\'{o}pez Pe\~{n}a, Javier; Lorscheid, Oliver, Torified varieties and their geometries over \(\mathbb{F}_1\), Math. Z., 267, 3-4, 605-643 (2011) · Zbl 1220.14021 [31] Lydakis, Manos, Smash products and \(\Gamma \)-spaces, Math. Proc. Cambridge Philos. Soc., 126, 2, 311-328 (1999) · Zbl 0996.55020 [32] MacLane, Saunders, Categories for the working mathematician, ix+262 pp. (1971), Springer-Verlag, New York-Berlin · Zbl 0705.18001 [33] Manin, Yuri, Lectures on zeta functions and motives (according to Deninger and Kurokawa), Ast\'{e}risque, 228, 4, 121-163 (1995) · Zbl 0840.14001 [34] Manin, Yuri I., Cyclotomy and analytic geometry over \(\mathbb{F}_1\). Quanta of maths, Clay Math. Proc. 11, 385-408 (2010), Amer. Math. Soc., Providence, RI · Zbl 1231.14018 [35] Manin, Yu. I., Local zeta factors and geometries under \({\rm Spec}\,{\bf Z}\), Izv. Ross. Akad. Nauk Ser. Mat., 80, 4, 123-130 (2016) [36] Manin, Yuri I.; Marcolli, Matilde, Moduli operad over \(\mathbb{F}_1\). Absolute arithmetic and \(\mathbb{F}_1 \)-geometry, 331-361 (2016), Eur. Math. Soc., Z\"{u}rich · Zbl 1428.18035 [37] Marcolli, Matilde, Cyclotomy and endomotives, p-Adic Numbers Ultrametric Anal. Appl., 1, 3, 217-263 (2009) · Zbl 1236.46067 [38] Marcolli, Matilde; Ren, Zhi, \(q\)-deformations of statistical mechanical systems and motives over finite fields, p-Adic Numbers Ultrametric Anal. Appl., 9, 3, 204-227 (2017) · Zbl 1386.82006 [39] Marcolli, Matilde; Tabuada, Gon\c{c}alo, Bost-Connes systems, categorification, quantum statistical mechanics, and Weil numbers, J. Noncommut. Geom., 11, 1, 1-49 (2017) · Zbl 1429.14003 [40] Martin, Nicolas, The class of the affine line is a zero divisor in the Grothendieck ring: an improvement, C. R. Math. Acad. Sci. Paris, 354, 9, 936-939 (2016) · Zbl 1378.14009 [41] Mazorchuk, Volodymyr, Lectures on algebraic categorification, QGM Master Class Series, x+119 pp. (2012), European Mathematical Society (EMS), Z\"{u}rich · Zbl 1238.18001 [42] Ono, Ken; Rolen, Larry; Sprung, Florian, Zeta-polynomials for modular form periods, Adv. Math., 306, 328-343 (2017) · Zbl 1392.11023 [43] Schwede, Stefan, Stable homotopical algebra and \(\Gamma \)-spaces, Math. Proc. Cambridge Philos. Soc., 126, 2, 329-356 (1999) · Zbl 0920.55011 [44] S. Schwede, Symmetric spectra, preprint 2012, https://www.math.uni-bonn.de/\(\) schwede/SymSpec-v3.pdf · Zbl 0972.55005 [45] Segal, Graeme, Categories and cohomology theories, Topology, 13, 293-312 (1974) · Zbl 0284.55016 [46] Shub, M.; Sullivan, D., Homology theory and dynamical systems, Topology, 14, 109-132 (1975) · Zbl 0408.58023 [47] Soul\'{e}, Christophe, Les vari\'{e}t\'{e}s sur le corps \`a un \'{e}l\'{e}ment, Mosc. Math. J., 4, 1, 217-244, 312 (2004) · Zbl 1103.14003 [48] To\"{e}n, Bertrand; Vaqui\'{e}, Michel, Au-dessous de \({\rm Spec}\,\mathbb{Z} \), J. K-Theory, 3, 3, 437-500 (2009) · Zbl 1177.14022 [49] Verdier, Jean-Louis, Caract\'{e}ristique d’Euler-Poincar\'{e}, Bull. Soc. Math. France, 101, 441-445 (1973) · Zbl 0302.57007 [50] Zakharevich, Inna, The \(K\)-theory of assemblers, Adv. Math., 304, 1176-1218 (2017) · Zbl 1355.19001 [51] Zakharevich, Inna, On \(K_1\) of an assembler, J. Pure Appl. Algebra, 221, 7, 1867-1898 (2017) · Zbl 1362.19001 [52] Zakharevich, Inna, The annihilator of the Lefschetz motive, Duke Math. J., 166, 11, 1989-2022 (2017) · Zbl 1387.19006 [53] I. Zakharevich, private communication, July 2018. [54] I. Zakharevich, private communication, July 2018. This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.