Prasolov, A. V. Infiniteness of the group Nil. (English. Russian original) Zbl 0512.18004 Math. Notes 32, 484-485 (1983); translation from Mat. Zametki 32, 9-12 (1982). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 1 Review MSC: 18F25 Algebraic \(K\)-theory and \(L\)-theory (category-theoretic aspects) 16E20 Grothendieck groups, \(K\)-theory, etc. Keywords:K-functor; Nil; finitely generated Citations:Zbl 0365.18021 PDF BibTeX XML Cite \textit{A. V. Prasolov}, Math. Notes 32, 484--485 (1982; Zbl 0512.18004); translation from Mat. Zametki 32, 9--12 (1982) Full Text: DOI OpenURL References: [1] F. T. Farrell, ?The nonfiniteness of Nil,? Proc. Am. Math. Soc.,65, No. 2, 215-216 (1977). · Zbl 0365.18021 [2] D. Quillen, ?Higher algebraic K-theory. I,? in: Algebraic K-Theory I, Lecture Notes in Mathematics, Vol. 341, Springer-Verlag (1973), pp. 85-147. · Zbl 0292.18004 [3] G. Segal, ?Classifying spaces and spectral sequences,? Publ. Math. IHES, No. 34, 105-112 (1968). · Zbl 0199.26404 [4] D. Grayson, ?Higher algebraic K-theory. II,? in: Algebraic K-Theory, Lecture Notes in Mathematics, Vol. 551, Springer-Verlag (1976), pp. 217-240. · Zbl 0362.18015 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.