×

Concerning the semistability of tensor products in Arakelov geometry. (English) Zbl 1286.14040

Let \(k\) be a field of characteristic \(0\), and let \(E\) and \(F\) be two vector bundles on a smooth projective integral curve \(C\) over \(k\), then it is well known that the semistabilities of \(E\) and \(F\) imply the semistability of \(E\otimes F\). The aim of the article under review is to investigate the arithmetic analogue of this result in the context of Arakelov geometry. Precisely, for any two Hermitian vector bundles \(\overline{E}\) and \(\overline{F}\) over an arithmetic curve \(\text{Spec}(\mathcal{O}_K)\) where \(\mathcal{O}_K\) is the ring of integers in a number field \(K\), the authors showed that the maximal slopes of \(\overline{E}\), \(\overline{F}\) and \(\overline{E}\otimes\overline{F}\) satisfy the inequality \[ \widehat{\mu}_{\text{max}}(\overline{E}\otimes\overline{F})\leq\widehat{\mu}_{\text{max}}(\overline{E})+\widehat{\mu}_{\text{max}}(\overline{F}) +\frac{1}{2}\text{min}(\log(\text{rk}E),\log(\text{rk}F)). \] They also proved that \(\widehat{\mu}(\overline{V})\leq\widehat{\mu}_{\text{max}}(\overline{E})+\widehat{\mu}_{\text{max}}(\overline{F})\) if \(V\) is an \(\mathcal{O}_K\)-submodule of \(E\otimes F\) of rank \(\leq 4\). This fact will imply that, if \(\overline{E}\) and \(\overline{F}\) are semistable and if \(\text{rk}E.\text{rk}F\leq 9\), then \(\overline{E}\otimes\overline{F}\) also is semistable.

MSC:

14G40 Arithmetic varieties and schemes; Arakelov theory; heights
PDF BibTeX XML Cite
Full Text: DOI arXiv

References:

[1] André, Y., Slope filtrations, Confluentes Mathematici, 1, 1, 1-85, (2009) · Zbl 1213.14039
[2] André, Y., On nef and semistable Hermitian lattices, and their behaviour under tensor product, The Tohoku Mathematical Journal. Second Series, 63, 4, 629-649, (2011) · Zbl 1256.11030
[3] Atiyah, M.; Bott, R.; Patodi, V. K., On the heat equation and the index theorem, Inventiones Mathematicae, 19, 279-330, (1973) · Zbl 0257.58008
[4] Banaszczyk, W., New bounds in some transference theorems in the geometry of numbers, Mathematische Annalen, 296, 4, 625-635, (1993) · Zbl 0786.11035
[5] Bogomolov, F. A., Holomorphic tensors and vector bundles on projective manifolds, Izvestiya Akademii Nauk SSSR. Seriya Matematicheskaya, 42, 6, 1227-1287, (1978), 1439
[6] Borek, T., Successive minima and slopes of Hermitian vector bundles over number fields, Journal of Number Theory, 113, 2, 380-388, (2005) · Zbl 1100.14513
[7] Bost, J.-B., Semi-stability and heights of cycles, Inventiones Mathematicae, 118, 2, 223-253, (1994) · Zbl 0873.14028
[8] Bost, J.-B., Périodes et isogénies des variétés abéliennes sur LES corps de nombres (dʼaprès D. masser et G. Wüstholz), Séminaire Bourbaki 1994/1995, Exp. No. 795, Astérisque, 237, 4, 115-161, (1996) · Zbl 0936.11042
[9] J.-B. Bost, Hermitian vector bundle and stability, lecture at the conference “Algebraische Zahlentheorie”, Oberwolfach, July 24th, 1997.
[10] Bost, J.-B., Algebraic leaves of algebraic foliations over number fields, Publications Mathématiques de Institut de Hautes Études Scientifiques, 93, 161-221, (2001) · Zbl 1034.14010
[11] Bost, J.-B., Evaluation maps, slopes, and algebraicity criteria, (Proceedings of the International Congress of Mathematicians, vol. II, Madrid, 2006, (2007), European Mathematical Society Switzerland), 537-562 · Zbl 1141.14011
[12] J.-B. Bost, Stability of hermitian vector bundles over arithmetic curves and geometric invariant theory, lecture at the conference “International Conference on Geometry and Analysis on Manifolds”, Chern Institute of Mathematics, Nankai University, April 8th, 2007.
[13] Bost, J.-B.; Gillet, H.; Soulé, C., Heights of projective varieties, Journal of the American Mathematical Society, 7, 4, 903-1027, (October 1994)
[14] Bost, J.-B.; Künnemann, K., Hermitian vector bundles and extension groups on arithmetic schemes. I. geometry of numbers, Advances in Mathematics, 223, 3, 987-1106, (2010) · Zbl 1187.14027
[15] Boucksom, S.; Chen, H., Okounkov bodies of filtered linear series, Compositio Mathematica, 147, 4, 1205-1229, (2011) · Zbl 1231.14020
[16] Burnol, J.-F., Remarques sur la stabilité en arithmétique, International Mathematics Research Notices, 6, 117-127, (1992) · Zbl 0764.14006
[17] Cassels, J. W.S., An introduction to the geometry of numbers, Classics in Mathematics, (1997), Springer-Verlag Berlin, (corrected reprint of the 1971 edition) · Zbl 0866.11041
[18] Chen, H., Maximal slope of tensor product of Hermitian vector bundles, Journal of Algebraic Geometry, 18, 3, 575-603, (2009) · Zbl 1170.14013
[19] Chen, H., Convergence des polygones de Harder-Narasimhan, Mémoires de la Société Mathématique de France, 120, 1-120, (2010)
[20] Chen, H., Harder-Narasimhan categories, Journal of Pure and Applied Algebra, 214, 2, 187-200, (2010) · Zbl 1186.18006
[21] Conway, J. H.; Sloane, N. J.A., Sphere packings, lattices and groups, Grundlehren der Mathematischen Wissenschaften, vol. 290, (1999), Springer-Verlag New York · Zbl 0915.52003
[22] Dat, J.-F.; Orlik, S.; Rapoport, M., Period domains over finite and p-adic fields, Cambridge Tracts in Mathematics, vol. 183, (2010), Cambridge University Press Cambridge · Zbl 1206.14001
[23] David, S.; Philippon, P., Minorations des hauteurs normalisées des sous-variétés des tores, Annali della Scuola Normale Superiore di Pisa. Classe di Scienze. Serie IV, 28, 3, 489-543, (1999) · Zbl 1002.11055
[24] E. de Shalit, O. Parzanchevski, On tensor products of semistable lattices, preprint, 2006.
[25] Donaldson, S. K., A new proof of a theorem of Narasimhan and Seshadri, Journal of Differential Geometry, 18, 2, 269-277, (1983) · Zbl 0504.49027
[26] S. Elsenhans, Stabile gitter und tensor produkt, Masterʼs thesis, Göttingen, 2001.
[27] Esnault, H.; Viehweg, E., Effective bounds for semipositive sheaves and for the height of points on curves over complex function fields, Algebraic Geometry, Berlin, 1988, Compositio Mathematica, 76, 1-2, 69-85, (1990) · Zbl 0742.14020
[28] Fulton, W., Intersection theory, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge, vol. 2, (1998), Springer-Verlag Berlin · Zbl 0885.14002
[29] Gasbarri, C., Heights and geometric invariant theory, Forum Mathematicum, 12, 135-153, (2000) · Zbl 0955.14018
[30] Gaudron, É., Pentes des fibrés vectoriels adéliques sur un corps global, Rendiconti del Seminario Matematico della Università di Padova, 119, 21-95, (2008) · Zbl 1206.14047
[31] Gaudron, É., Géométrie des nombres adélique et lemmes de Siegel généralisés, Manuscripta Mathematica, 130, 2, 159-182, (2009) · Zbl 1231.11076
[32] É. Gaudron, Minorations simultanées de formes linéaires de logarithmes de nombres algébriques, preprint, 2010.
[33] É. Gaudron, G. Rémond, Minima, pentes et algèbre tensorielle, Israel Journal of Mathematics, in press.
[34] Gieseker, D., Stable vector bundles and the Frobenius morphism, Annales Scientifiques de lʼÉcole Normale Supérieure. Quatrième Série, 6, 95-101, (1973) · Zbl 0281.14013
[35] Gieseker, D., On a theorem of Bogomolov on Chern classes of stable bundles, American Journal of Mathematics, 101, 1, 77-85, (1979) · Zbl 0431.14005
[36] Grayson, D., Reduction theory using semistability, Commentarii Mathematici Helvetici, 59, 4, 600-634, (1984) · Zbl 0564.20027
[37] G. Harder, U. Stuhler, Canonical parabolic subgroups of Arakelov group schemes, preprint, 2003.
[38] Hartshorne, R., Ample vector bundles, Publications Mathématiques de Institut des Hautes Études Scientifiques, 29, 63-94, (1966) · Zbl 0173.49003
[39] Hartshorne, R., Ample vector bundles on curves, Nagoya Mathematical Journal, 43, 73-89, (1971) · Zbl 0218.14018
[40] Hoffmann, N.; Jahnel, J.; Stuhler, U., Generalized vector bundles on curves, Journal für die Reine und Angewandte Mathematik, 495, 35-60, (1998) · Zbl 0908.14011
[41] Huybrechts, D.; Lehn, M., The geometry of moduli spaces of sheaves, Cambridge Mathematical Library, (2010), Cambridge University Press Cambridge · Zbl 1206.14027
[42] Kempf, G. R., Instability in invariant theory, Annals of Mathematics, 108, 299-316, (1978) · Zbl 0406.14031
[43] Kitaoka, Y., Arithmetic of quadratic forms, Cambridge Tracts in Mathematics, vol. 106, (1993), Cambridge University Press Cambridge · Zbl 0785.11021
[44] Lazarsfeld, R., Positivity in algebraic geometry. II: positivity for vector bundles, and multiplier ideals, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge, vol. 49, (2004), Springer-Verlag Berlin · Zbl 1093.14500
[45] Miyaoka, Y., The Chern classes and Kodaira dimension of a minimal variety, (Algebraic Geometry, Sendai, 1985, Adv. Stud. Pure Math., vol. 10, (1987), North-Holland Amsterdam), 449-476
[46] Narasimhan, M. S.; Seshadri, C. S., Stable and unitary vector bundles on a compact Riemann surface, Annals of Mathematics. Second Series, 82, 540-567, (1965) · Zbl 0171.04803
[47] Pazuki, F., Theta heights and faltings heights, Bulletin de la Société Mathématique de France, 140, 1, 19-49, (2012) · Zbl 1245.14029
[48] Ramanan, S.; Ramanathan, A., Some remarks on the instability flag, The Tohoku Mathematical Journal. Second Series, 36, 2, 269-291, (1984) · Zbl 0567.14027
[49] Raynaud, M., Fibrés vectoriels instables—applications aux surfaces (dʼaprès Bogomolov), (Algebraic Surfaces, Orsay, 1976-78, Lecture Notes in Math., vol. 868, (1981), Springer Berlin), 293-314 · Zbl 0473.14006
[50] Rousseau, G., Instabilité dans LES espaces vectoriels, (Algebraic Surfaces, Orsay, 1976-78, Lecture Notes in Math., vol. 868, (1981), Springer Berlin), 263-276 · Zbl 0465.14005
[51] Roy, D.; Thunder, J. L., An absolute siegelʼs lemma, Journal für die Reine und Angewandte Mathematik, 476, 1-26, (1996)
[52] Roy, D.; Thunder, J. L., Addendum and erratum to: “an absolute siegelʼs lemma” [J. reine angew. math. 476 (1996) 1-26; MR1401695 (97h:11075)], Journal für die Reine und Angewandte Mathematik, 508, 47-51, (1999)
[53] Siu, Y. T., Lectures on Hermitian-Einstein metrics for stable bundles and Kähler-Einstein metrics, DMV Seminar, vol. 8, (1987), Birkhäuser Verlag Basel · Zbl 0631.53004
[54] Stuhler, U., Eine bemerkung zur reduktionstheorie quadratischen formen, Archiv der Mathematik, 27, 604-610, (1976) · Zbl 0338.10024
[55] Totaro, B., Tensor products in p-adic Hodge theory, Duke Mathematical Journal, 83, 1, 79-104, (1996) · Zbl 0873.14019
[56] Weyl, H., The classical groups: their invariants and representations, Princeton Landmarks in Mathematics, (1997), Princeton University Press Princeton, NJ · Zbl 1024.20501
[57] Zhang, S., Positive line bundles on arithmetic varieties, Journal of the American Mathematical Society, 8, 1, 187-221, (January 1995)
[58] Zhang, S., Heights and reductions of semistable varieties, Compositio Mathematica, 104, 1, 77-105, (1996) · Zbl 0924.11055
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.