On \(\mathcal{N} = 1\) 4d effective couplings for \(F\)-theory and heterotic vacua. (English) Zbl 1251.81076

The authors show how the combination of the methods of mirror symmetry and Hodge theory enable one to compute effective couplings of some heterotic/type II compactfications, including the superpotential and the Kähler potential. After describing the involvement of Hodge theory in two steps, they explain that the four-fold geometry represents the compactification manifold of a dual \(F\)-theory or type IIA compactification. They show that the four-fold result agrees with the three-fold result when it should, but gives more general results, including the case when the heterotic three-fold is not a Calabi-Yau three-fold. More specificly, the heterotic case includes a class of bundles on elliptic manifolds constructed by Friedmann, Morgan and Witten. Indeed, the result obtained from an \(F\)-theory/type IIA compactification on the dual four-fold differs from the three-fold result. These deviations represent physical corrections to the dual type II/heterotic compactification from perturbative and instanton effects and describe how Hodge theory and mirror symmetry on the four-fold provides a powerful tool to determine these perturbative and non-perturbative contributions. In effect, mirror symmetry of four-folds computes non-perturbative corrections to mirror symmetry on the three-folds, including \(D\)-instanton corrections. The authors also discuss the type II/heterotic duality in the context of non-compact four-folds that arise as two-dimensional ALE fibration. Finally, the authors conjecture an extension of an observation due to Warner which relates the deformation superpotential of matrix factorizations of minimal models to the flux superpotential of local four-folds near an ADE singularity.


81T30 String and superstring theories; other extended objects (e.g., branes) in quantum field theory
14J32 Calabi-Yau manifolds (algebro-geometric aspects)
14D21 Applications of vector bundles and moduli spaces in mathematical physics (twistor theory, instantons, quantum field theory)


Full Text: DOI arXiv Euclid


[1] E. Witten, New issues in manifolds of SU(3) holonomy, Nucl. Phys. B268 (1986), 79.
[2] E.Witten, Chern-Simons gauge theory as a string theory, Prog. Math. 133 (1995), 637. · Zbl 0844.58018
[3] T. R. Taylor and C. Vafa, RR flux on Calabi-Yau and partial supersymmetry breaking, Phys. Lett. B474 (2000), 130. · Zbl 0959.81105
[4] A. Strominger, Superstrings with torsion, Nucl. Phys. B274 (1986), 253.
[5] K. Hori and C. Vafa, Mirror symmetry.
[6] C. Vafa, Extending mirror conjecture to Calabi-Yau with bundles. · Zbl 0986.14500
[7] M. Aganagic and C. Vafa, Mirror symmetry, D-branes and counting holomorphic discs. · Zbl 1094.32006
[8] W. Lerche, P. Mayr and N. Warner, N = 1 special geometry, mixed Hodge variations and toric geometry. Holomorphic N = 1 special geometry of open-closed type II strings, arXiv:
[9] H. Jockers and M. Soroush, Effective superpotentials for compact D5-brane Calabi-Yau geometries, Commun. Math. Phys. 290 (2009), 249. · Zbl 1204.32015
[10] M. Alim, M. Hecht, P. Mayr and A. Mertens, Mirror symmetry for toric branes on compact hypersurfaces, JHEP 0909 (2009), 126.
[11] M. Alim, M. Hecht, H. Jockers, P. Mayr, A. Mertens and M. Soroush, Hints for off-shell mirror symmetry in type II/F-theory compactifications, Nucl. Phys. B841 (2010), 303-338. · Zbl 1207.81093
[12] R. Friedman, J. Morgan and E. Witten, Vector bundles and F theory, Commun. Math. Phys. 187 (1997), 679. · Zbl 0919.14010
[13] M. Bershadsky, A. Johansen, T. Pantev and V. Sadov, On fourdimensional compactifications of F-theory, Nucl. Phys. B505 (1997), 165. · Zbl 0925.14019
[14] C. Vafa, Evidence for F-theory, Nucl. Phys. B469 (1996), 403. · Zbl 1003.81531
[15] D. R. Morrison and C. Vafa, Compactifications of F-theory on Calabi-Yau threefolds - I, Nucl. Phys. B473 (1996), 74. Compactifications of F-theory on Calabi-Yau threefolds - II, Nucl. Phys. B476 (1996), 437. arXiv: hep-th/9603161 · Zbl 0925.14005
[16] P. Mayr, N = 1 mirror symmetry and open/closed string duality, Adv. Theor. Math. Phys. 5 (2002), 213. · Zbl 1022.81046
[17] M. Aganagic and C. Beem, The geometry of D-brane superpotentials,. · Zbl 1306.81176
[18] W. Lerche and P. Mayr, On N = 1 mirror symmetry for open type II strings.
[19] T. W. Grimm, T. W. Ha, A. Klemm and D. Klevers, Computing brane and flux superpotentials in F-theory compactifications, JHEP 1004 (2010), 015. · Zbl 1272.81153
[20] S. Li, B. H. Lian and S. T. Yau, Picard-Fuchs equations for relative periods and Abel-Jacobi map for Calabi-Yau hypersurfaces. [math.AG]. · Zbl 1253.14036
[21] H. Ooguri and C. Vafa, Two-dimensional black hole and singularities of CY manifolds, Nucl. Phys. B463 (1996), 55. · Zbl 1003.83511
[22] S. Katz, P. Mayr and C. Vafa, Mirror symmetry and exact solution of 4D N = 2 gauge theories. I, Adv. Theor. Math. Phys. 1 (1998), 53. · Zbl 0912.32016
[23] P. Berglund and P. Mayr, Heterotic string/F-theory duality from mirror symmetry, Adv. Theor. Math. Phys. 2 (1999), 1307. · Zbl 1041.81570
[24] S. Gukov, C. Vafa and E. Witten, CFT’s from Calabi-Yau fourfolds, Nucl. Phys. B 584 (2000), 69 [Erratum-ibid. B608 (2001), 477]. · Zbl 0984.81143
[25] T. Eguchi, N. P. Warner and S. K. Yang, ADE singularities and coset models, Nucl. Phys. B607 (2001), 3. · Zbl 0969.81611
[26] J. Knapp and H. Omer, Matrix factorizations, minimal models and Massey products, JHEP 0605 (2006), 064.
[27] E. Witten, Branes and the dynamics of QCD, Nucl. Phys. B507 (1997), 658. · Zbl 0925.81388
[28] S. Kachru, S. H. Katz, A. E. Lawrence and J. McGreevy, Open string instantons and superpotentials, Phys. Rev. D62 (2000), 026001. Mirror symmetry for open strings, Phys. Rev. D62 (2000), 126005. arXiv: hep-th/0006047
[29] J. Walcher, Opening mirror symmetry on the quintic, Commun. Math. Phys. 276 (2007), 671. · Zbl 1135.14030
[30] D. R. Morrison and J. Walcher, D-branes and normal functions,. · Zbl 1166.81036
[31] G. Curio and R. Y. Donagi, Moduli in N = 1 heterotic/F-theory duality, Nucl. Phys. B518 (1998), 603. · Zbl 0945.81047
[32] P. S. Aspinwall, Aspects of the hypermultiplet moduli space in string duality, JHEP 9804 (1998), 019. · Zbl 0958.81070
[33] D. Lüst, P. Mayr, S. Reffert and S. Stieberger, F-theory flux, destabilization of orientifolds and soft terms on D7-branes, Nucl. Phys. B732 (2006), 243. · Zbl 1192.81278
[34] H. Jockers and J. Louis, D-terms and F-terms from D7-brane fluxes, Nucl. Phys. B718 (2005), 203. · Zbl 1207.81126
[35] R. Donagi and M. Wijnholt, Model building with F-theory,. · Zbl 1260.81194
[36] P. Berglund and P. Mayr, Non-perturbative superpotentials in F-theory and string duality. · Zbl 0925.32012
[37] A. Grothendieck, La théorie des classes de Chern, Bull. Soc. Math. France 86 (1958), 137-154. · Zbl 0091.33201
[38] R. P. Thomas, A holomorphic Casson invariant for Calabi-Yau 3-folds, and bundles on K3 fibrations, J. Differential Geom. 54(2) (2000), 367. · Zbl 1034.14015
[39] P. S. Aspinwall and D. R. Morrison, Point-like instantons on K3 orbifolds, Nucl. Phys. B503 (1997), 533. · Zbl 0934.81048
[40] C. Vafa, Superstrings and topological strings at large N, J. Math. Phys. 42 (2001), 2798. · Zbl 1060.81594
[41] S. B. Giddings, S. Kachru and J. Polchinski, Hierarchies from fluxes in string compactifications, Phys. Rev. D66 (2002), 106006.
[42] K. Becker, M. Becker, C. Vafa and J. Walcher, Moduli stabilization in non-geometric backgrounds, Nucl. Phys. B770 (2007), 1. · Zbl 1117.81125
[43] M. R. Douglas, Effective potential and warp factor dynamics,. · Zbl 1271.81183
[44] M. Haack, J. Louis and M. Marquart, Type IIA and heterotic string vacua in D = 2, Nucl. Phys. B598 (2001), 30. · Zbl 1046.81539
[45] C. Vafa and E.Witten, Dual string pairs with N = 1 and N = 2 supersymmetry in four dimensions, Nucl. Phys. Proc. Suppl. 46 (1996), 225. · Zbl 0957.81590
[46] A. Sen, Orientifold limit of F-theory vacua, Nucl. Phys. Proc. Suppl. 68 (1998), 92 [Nucl. Phys. Proc. Suppl. 67 (1998), 81]. · Zbl 0999.81520
[47] A. Sen and S. Sethi, The mirror transform of type I vacua in six dimensions, Nucl. Phys. B499 (1997), 45. · Zbl 0934.81041
[48] B. Andreas, G. Curio, D. Hernandez Ruiperez and S. T. Yau, Fibrewise T-duality for D-branes on elliptic Calabi-Yau, JHEP 0103 (2001), 020.
[49] N. Seiberg and E.Witten, Comments on string dynamics in six dimensions, Nucl. Phys. B471 (1996), 121. · Zbl 1003.81535
[50] S. Gukov and M. Haack, IIA string theory on Calabi-Yau fourfolds with background fluxes, Nucl. Phys. B639 (2002), 95. · Zbl 0997.81078
[51] N. Halmagyi, I. V. Melnikov and S. Sethi, Instantons, hypermultiplets and the heterotic string, JHEP 0707 (2007), 086.
[52] L. Andrianopoli, R. D’Auria, S. Ferrara and M. A. Lledo, JHEP 0303 (2003), 044. C. Angelantonj, R. D’Auria, S. Ferrara and M. Trigiante, K3 \times T2/Z2 orientifolds with fluxes, open string moduli and critical points, Phys. Lett. B583 (2004), 331. arXiv: hep-th/0312019
[53] N. Nekrasov, H. Ooguri and C. Vafa, S-duality and topological strings, JHEP 0410 (2004), 009.
[54] R. D’Auria, S. Ferrara, M. Trigiante and S. Vaula, Gauging the Heisenberg algebra of special quaternionic manifolds, Phys. Lett. B610 (2005), 147. · Zbl 1247.81362
[55] M. Graña, J. Louis and D. Waldram, SU(3) x SU(3) compactification and mirror duals of magnetic fluxes, JHEP 0704 (2007), 101.
[56] P. S. Aspinwall and J. Louis, On the ubiquity of K3 fibrations in string duality, Phys. Lett. B369 (1996), 233.
[57] P. S. Aspinwall, An analysis of fluxes by duality.
[58] E. Witten, String theory dynamics in various dimensions, Nucl. Phys. B443 (1995), 85. · Zbl 0990.81663
[59] E. Perevalov and G. Rajesh, Mirror symmetry via deformation of bundles on K3 surfaces, Phys. Rev. Lett. 79 (1997), 2931. · Zbl 0953.32015
[60] C. M. Hull, Compactifications of the heterotic superstring, Phys. Lett. B178 (1986), 357. · Zbl 0602.53064
[61] I. Bars, D. Nemeschansky and S. Yankielowicz, Compactified superstrings and torsion, Nucl. Phys. B278 (1986), 632. · Zbl 0648.53062
[62] K. Becker, M. Becker, K. Dasgupta and P. S. Green, Compactifications of heterotic theory on non-Kähler complex manifolds. I, JHEP 0304 (2003), 007. K. Becker, M. Becker, P. S. Green, K. Dasgupta and E. Sharpe, Compactifications of heterotic strings on non-Kähler complex manifolds. II, Nucl. Phys. B678 (2004), 19. arXiv: hep-th/0310058 · Zbl 1097.81703
[63] G. Lopes Cardoso, G. Curio, G. Dall’Agata and D. Lüst, Heterotic string theory on non-Kähler manifolds with H-flux and gaugino condensate, Fortsch. Phys. 52 (2004), 483. · Zbl 1049.81582
[64] S. Gurrieri, A. Lukas and A. Micu, Heterotic on half-flat, Phys. Rev. D 70 (2004), 126009. Heterotic string compactifications on half-flat manifolds II, JHEP 0712 (2007), 081. arXiv: 0709.1932 · Zbl 1246.81252
[65] I. Benmachiche, J. Louis and D. Martinez-Pedrera, The effective action of the heterotic string compactified on manifolds with SU(3) structure, Class. Quant. Grav. 25 (2008), 135006. · Zbl 1180.81108
[66] K. Becker, M. Becker, K. Dasgupta and S. Prokushkin, Properties of heterotic vacua from superpotentials, Nucl. Phys. B666 (2003), 144. · Zbl 1057.81543
[67] G. Lopes Cardoso, G. Curio, G. Dall’Agata and D. Lüst, BPS action and superpotential for heterotic string compactifications with fluxes, JHEP 0310 (2003), 004.
[68] D. Andriot, R. Minasian and M. Petrini, Flux backgrounds from Twist duality, JHEP 0912 (2009), 028.
[69] K. Dasgupta, G. Rajesh and S. Sethi, M theory, orientifolds and Gflux, JHEP 9908 (1999), 023.
[70] J. X. Fu and S. T. Yau, Existence of supersymmetric Hermitian metrics with torsion on non-Kaehler manifolds,
[71] K. Becker, M. Becker, J. X. Fu, L. S. Tseng and S. T. Yau, Anomaly cancellation and smooth non-Kähler solutions in heterotic string theory, Nucl. Phys. B751 (2006), 108. · Zbl 1192.81312
[72] R. Bott and L. W. Tu, Differential forms in algebraic topology, Springer-Verlag, Berlin. · Zbl 0496.55001
[73] G. Rajesh, Toric geometry and F-theory/heterotic duality in four dimensions, JHEP 9812 (1998), 018. · Zbl 0949.81046
[74] R. Donagi, A. Lukas, B. A. Ovrut and D. Waldram, Non-perturbative vacua and particle physics in M-theory, JHEP 9905 (1999), 018. · Zbl 0952.14033
[75] S. J. Gates, M. T. Grisaru and M. E. Wehlau, A study of general 2D, N = 2 matter coupled to supergravity in superspace, Nucl. Phys. B460 (1996), 579. · Zbl 1003.83516
[76] E. Witten, Phases of N = 2 theories in two dimensions, Nucl. Phys. B403 (1993), 159. · Zbl 0910.14020
[77] B. de Wit, M. T. Grisaru, E. Rabinovici and H. Nicolai, Two loop finiteness of D = 2 supergravity, Phys. Lett. B286 (1992), 78.
[78] W. Lerche, Fayet-Iliopoulos potentials from four-folds, JHEP 9711 (1997), 004. · Zbl 0949.81519
[79] P. Mayr, Mirror symmetry, N = 1 superpotentials and tensionless strings on Calabi-Yau four-folds, Nucl. Phys. B494 (1997), 489. · Zbl 0938.81033
[80] H. Jockers and J. Louis, The effective action of D7-branes in N = 1 Calabi-Yau orientifolds, Nucl. Phys. B705 (2005), 167. · Zbl 1119.81371
[81] R. Pandharipande, J. Solomon and J. Walcher, Disk enumeration on the quintic 3-fold, J. Amer. Math. Soc. 21 (2008), 1169-1209 [arXiv.org:math/0610901]. · Zbl 1203.53086
[82] V. V. Batyrev, Dual polyhedra and mirror symmetry for Calabi-Yau hypersurfaces in toric varieties, J. Algebr. Geom. 3 (1994), 493. · Zbl 0829.14023
[83] B. R. Greene, D. R. Morrison and M. R. Plesser, Mirror manifolds in higher dimension, Commun. Math. Phys. 173 (1995), 559. · Zbl 0842.32014
[84] A. Klemm, B. Lian, S. S. Roan and S. T. Yau, Calabi-Yau fourfolds for M- and F-theory compactifications, Nucl. Phys. B518 (1998), 515. · Zbl 0920.14016
[85] P. Candelas, X. C. De La Ossa, P. S. Green and L. Parkes, A pair of Calabi-Yau manifolds as an exactly soluble superconformal theory, Nucl. Phys. B359 (1991), 21. · Zbl 1098.32506
[86] H. Ooguri and C. Vafa, Knot invariants and topological strings, Nucl. Phys. B577 (2000), 419. · Zbl 1036.81515
[87] B. de Wit, V. Kaplunovsky, J. Louis and D. Lüst, Perturbative couplings of vector multiplets in N = 2 heterotic string vacua, Nucl. Phys. B451 (1995), 53. I. Antoniadis, S. Ferrara, E. Gava, K. S. Narain and T. R. Taylor, Perturbative prepotential and monodromies in N = 2 heterotic superstring, Nucl. Phys. B447 (1995), 35. arXiv: hep-th/9504034 · Zbl 0925.81145
[88] P. S. Aspinwall and M. R. Plesser, T-duality can fail, JHEP 9908 (1999), 001. · Zbl 1060.81569
[89] M. Aganagic, A. Klemm and C. Vafa, Disk instantons, mirror symmetry and the duality web, Z. Naturforsch. A57 (2002), 1. · Zbl 1203.81153
[90] M. Bershadsky, K. A. Intriligator, S. Kachru, D. R. Morrison, V. Sadov and C. Vafa, Geometric singularities and enhanced gauge symmetries, Nucl. Phys. B481 (1996), 215. · Zbl 1049.81581
[91] T. Graber and E. Zaslow, Open string Gromov-Witten invariants: calculations and a mirror ‘theorem’. · Zbl 1085.14518
[92] M. Roček, C. Vafa and S. Vandoren, Hypermultiplets and topological strings, JHEP 0602 (2006), 062. D. Robles-Llana, F. Saueressig and S. Vandoren, String loop corrected hypermultiplet moduli spaces, JHEP 0603 (2006), 081. D. Robles-Llana, M. Roček, F. Saueressig, U. Theis and S. Vandoren, Nonperturbative corrections to 4D string theory effective actions from SL(2, Z) duality and supersymmetry, Phys. Rev. Lett. 98 (2007), 211602. S. Alexandrov, B. Pioline, F. Saueressig and S. Vandoren, D-instantons and twistors, JHEP 0903 (2009), 044. arXiv: hep-th/0602164 arXiv: hep-th/0612027 arXiv: 0812.4219
[93] E. Witten, Heterotic string conformal field theory and A-D-E singularities, JHEP 0002 (2000), 025. · Zbl 0959.81082
[94] P. S. Aspinwall and M. R. Plesser, Heterotic string corrections from the dual type II string, JHEP 0004 (2000), 025. · Zbl 0959.81060
[95] P. Mayr, Conformal field theories on K3 and three-dimensional gauge theories, JHEP 0008 (2000), 042. · Zbl 0989.81102
[96] K. Hori, H. Ooguri and C. Vafa, Non-Abelian conifold transitions and N = 4 dualities in three dimensions, Nucl. Phys. B504 (1997), 147. · Zbl 0934.81049
[97] W. Lerche, C. Vafa and N. P. Warner, Chiral rings in N = 2 superconformal theories, Nucl. Phys. B324 (1989), 427.
[98] Y. Kazama and H. Suzuki, New N = 2 superconformal field theories and superstring compactification, Nucl. Phys. B321 (1989), 232.
[99] M. Herbst, C. I. Lazaroiu and W. Lerche, Superpotentials, A(infinity) relations and WDVV equations for open topological strings, JHEP 0502 (2005), 071.
[100] C. Curto, D. R. Morrison, Threefold flops via matrix factorizations. · Zbl 1360.14053
[101] J. Distler and S. Kachru, (0,2) Landau-Ginzburg theory, Nucl. Phys. B413 (1994), 213. · Zbl 1007.81505
[102] S. Govindarajan, T. Jayaraman and T. Sarkar, Worldsheet approaches to D-branes on supersymmetric cycles, Nucl. Phys. B580 (2000), 519. · Zbl 1071.81564
[103] H. Jockers and M. Soroush, Relative periods and open-string integer invariants for a compact Calabi-Yau hypersurface, Nucl. Phys. B821 (2009), 535. · Zbl 1203.81139
[104] T. W. Grimm, T. W. Ha, A. Klemm and D. Klevers, The D5-brane effective action and superpotential in N = 1 compactifications, Nucl. Phys. B816 (2009), 139. · Zbl 1194.81204
[105] S. Govindarajan and T. Jayaraman, Boundary fermions, coherent sheaves and D-branes on Calabi-Yau manifolds, Nucl. Phys. B618 (2001), 50. · Zbl 0973.81099
[106] L. B. Anderson, J. Gray, D. Grayson, Y. H. He and A. Lukas, Yukawa couplings in heterotic compactification, Commun. Math. Phys. 297 (2010), 95-127. Y. H. He, S. J. Lee and A. Lukas, Heterotic models from vector bundles on toric Calabi-Yau manifolds, JHEP 1005 (2010), 071. L. B. Anderson, J. Gray, Y. H. He and A. Lukas, Exploring positive monad bundles and a new heterotic standard model, JHEP 1002 (2010), 054. arXiv: 0911.0865 arXiv: 0911.1569 · Zbl 1203.81130
[107] K. Hori and J. Walcher, F-term equations near Gepner points, JHEP 0501 (2005), 008.
[108] S. K. Ashok, E. Dell’Aquila, D. E. Diaconescu and B. Florea, Obstructed D-branes in Landau-Ginzburg orbifolds, Adv. Theor. Math. Phys. 8 (2004), 427. · Zbl 1082.81068
[109] P. S. Aspinwall and S. H. Katz, Computation of superpotentials for D-branes, Commun. Math. Phys. 264 (2006), 227. · Zbl 1109.81062
[110] M. Baumgartl, I. Brunner and M. R. Gaberdiel, D-brane superpotentials and RG flows on the quintic, JHEP 0707 (2007), 061.
[111] H. Jockers and W. Lerche, Matrix factorizations, D-branes and their deformations, Nucl. Phys. Proc. Suppl. 171 (2007), 196.
[112] J. Knapp and E. Scheidegger, Matrix factorizations, massey products and F-terms for two-parameter Calabi-Yau hypersurfaces,. · Zbl 1206.81104
[113] A. C. Avram, M. Kreuzer, M. Mandelberg and H. Skarke, Searching for K3 fibrations, Nucl. Phys. B494 (1997), 567. M. Kreuzer and H. Skarke, Calabi-Yau 4-folds and toric fibrations, J. Geom. Phys. 26 (1998), 272. arXiv: hep-th/9701175 · Zbl 0951.81060
[114] G.-M. Greuel, G. Pfister, and H. Schönemann, Singular 3.0.1 - a computer algebra system for polynomial computations, Center for Computer Algebra, University of Kaiserslautern, 2006; http://www.singular.uni-kl.de.
[115] P. Candelas and A. Font, Duality between the webs of heterotic and type II vacua, Nucl.Phys. B511 (1998), 295. · Zbl 0947.81054
[116] P. Candelas, E. Perevalov and G. Rajesh, Toric geometry and enhanced gauge symmetry of F-theory/heterotic vacua, Nucl. Phys. B507 (1997), 445. · Zbl 0925.14026
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.