×

Relation between Regge calculus and BF theory on manifolds with defects. (English) Zbl 1416.83087

Summary: In Regge calculus, the space-time manifold is approximated by certain abstract simplicial complex, called a pseudomanifold, and the metric is approximated by an assignment of a length to each 1-simplex. In this paper for each pseudomanifold, we construct a smooth manifold which we call a manifold with defects. This manifold emerges from the purely combinatorial simplicial complex as a result of gluing geometric realizations of its \(n\)-simplices followed by removing the simplices of dimension \(n-2\). The Regge geometry is encoded in a boundary data of a BF theory on this manifold. We consider an action functional which coincides with the standard BF action for suitably regular manifolds with defects and fields. We show that the action evaluated at solutions of the field equations satisfying certain boundary conditions coincides with an evaluation of the Regge action at Regge geometries defined by the boundary data. As a result, the degrees of freedom of Regge calculus are traded for discrete degrees of freedom of topological BF theory.

MSC:

83D05 Relativistic gravitational theories other than Einstein’s, including asymmetric field theories
83C27 Lattice gravity, Regge calculus and other discrete methods in general relativity and gravitational theory
53Z05 Applications of differential geometry to physics
81T45 Topological field theories in quantum mechanics
PDF BibTeX XML Cite
Full Text: DOI arXiv

References:

[1] Rovelli, C., Vidotto, F.: Covariant Loop Quantum Gravity: An Elementary Introduction to Quantum Gravity and Spinfoam Theory. Cambridge University Press, Cambridge (2014)
[2] Rovelli, C.: Quantum Gravity. Cambridge University Press, Cambridge (2004) · Zbl 1091.83001
[3] Baez, JC, An introduction to spin foam models of quantum gravity and BF theory, Lect. Notes Phys., 543, 25-94, (2000) · Zbl 0978.81043
[4] Perez, A., Spin foam models for quantum gravity, Class. Quantum Gravity, 20, r43, (2003) · Zbl 1030.83002
[5] Perez, A., The spin foam approach to quantum gravity, Living Rev. Relat., 16, 3, (2013) · Zbl 1320.83008
[6] Rovelli, C., Zakopane lectures on loop gravity, PoS, QGQGS2011, 003, (2011)
[7] Engle, J.: Springer Handbook of Spacetime, Ch. Spin Foams. Springer, Berlin (2014)
[8] Rovelli, C., Loop quantum gravity: the first twenty five years, Class. Quantum Gravity, 28, 153002, (2011) · Zbl 1222.83005
[9] Ashtekar, A., Reuter, M., Rovelli, C.: General Relativity & Gravitation: a Centennial Perspective. Pennsylvania State University (2015)
[10] Thiemann, T.: Modern Canonical Quantum General Relativity. Cambridge University Press, Cambridge (2007) · Zbl 1129.83004
[11] Ponzano, G.; Regge, T.; Bloch, F. (ed.); Cohen, S. (ed.); Shalit, A. (ed.); Sambursky, S. (ed.); Talmi, I. (ed.), Spectroscopic and group theoretical methods in physics: Racah memorial volume, (1968), Amsterdam · Zbl 0172.27401
[12] Engle, J.; Livine, E.; Pereira, R.; Rovelli, C., LQG vertex with finite Immirzi parameter, Nucl. Phys. B, 799, 136-149, (2008) · Zbl 1292.83023
[13] Freidel, L.; Krasnov, K., A new spin foam model for 4D gravity, Class. Quantum Gravity, 25, 125018, (2008) · Zbl 1144.83007
[14] Barrett, JW; Crane, L., Relativistic spin networks and quantum gravity, J. Math. Phys., 39, 3296-3302, (1998) · Zbl 0967.83006
[15] Barrett, JW; Crane, L., A Lorentzian signature model for quantum general relativity, Class. Quantum Gravity, 17, 3101-3118, (2000) · Zbl 0967.83007
[16] Barrett, JW; Dowdall, RJ; Fairbairn, WJ; Hellmann, F.; Pereira, R., Lorentzian spin foam amplitudes: graphical calculus and asymptotics, Class. Quantum Gravity, 27, 165009, (2010) · Zbl 1197.83049
[17] Bianchi, E.; Regoli, D.; Rovelli, C., Face amplitude of spinfoam quantum gravity, Class. Quantum Gravity, 27, 185009, (2010) · Zbl 1200.83049
[18] Kaminski, W.; Kisielowski, M.; Lewandowski, J., Spin-foams for all loop quantum gravity, Class. Quantum Gravity, 27, 095006, (2010) · Zbl 1190.83043
[19] Kaminski, W.; Kisielowski, M.; Lewandowski, J., The EPRL intertwiners and corrected partition function, Class. Quantum Gravity, 27, 165020, (2010) · Zbl 1197.83060
[20] Bahr, B.; Hellmann, F.; Kaminski, W.; Kisielowski, M.; Lewandowski, J., Operator spin foam models, Class. Quantum Gravity, 28, 105003, (2011) · Zbl 1217.83028
[21] Engle, J., Proposed proper Engle-Pereira-Rovelli-Livine vertex amplitude, Phys. Rev., D87, 084048, (2013)
[22] Engle, J., A spin-foam vertex amplitude with the correct semiclassical limit, Phys. Lett. B, 724, 333-337, (2013) · Zbl 1331.81349
[23] Bianchi, E.; Hellmann, F., The construction of spin foam vertex amplitudes, SIGMA, 9, 008, (2013) · Zbl 1269.81095
[24] Plebanski, JF, On the separation of Einsteinian substructures, J. Math. Phys., 18, 2511-2520, (1977) · Zbl 0368.53032
[25] Reisenberger, MP; Rovelli, C., ’Sum over surfaces’ form of loop quantum gravity, Phys. Rev. D, 56, 3490-3508, (1997)
[26] Rovelli, C., The projector on physical states in loop quantum gravity, Phys. Rev. D, 59, 104015, (1999)
[27] Noui, K.; Perez, A., Three-dimensional loop quantum gravity: physical scalar product and spin foam models, Class. Quantum Gravity, 22, 1739-1762, (2005) · Zbl 1072.83009
[28] Engle, J.; Han, M.; Thiemann, T., Canonical path integral measures for Holst and Plebanski gravity. I. Reduced phase space derivation, Class. Quantum Gravity, 27, 245014, (2010) · Zbl 1208.83041
[29] Han, M.; Thiemann, T., On the relation between Rigging inner product and master constraint direct integral decomposition, J. Math. Phys., 51, 092501, (2010) · Zbl 1309.81161
[30] Han, M.; Thiemann, T., On the relation between operator constraint-, master constraint-, reduced phase space-, and path integral quantisation, Class. Quantum Gravity, 27, 225019, (2010) · Zbl 1204.83043
[31] Dittrich, B.; Hohn, PA, From covariant to canonical formulations of discrete gravity, Class. Quantum Gravity, 27, 155001, (2010) · Zbl 1195.83030
[32] Alesci, E.; Thiemann, T.; Zipfel, A., Linking covariant and canonical LQG: new solutions to the Euclidean scalar constraint, Phys. Rev. D, 86, 024017, (2012)
[33] Thiemann, T.; Zipfel, A., Linking covariant and canonical LQG II: spin foam projector, Class. Quantum Gravity, 31, 125008, (2014) · Zbl 1295.83032
[34] Ashtekar, A.; Marolf, D.; Mourao, J.; Thiemann, T., Constructing Hamiltonian quantum theories from path integrals in a diffeomorphism-invariant context, Class. Quantum Gravity, 17, 4919, (2000) · Zbl 0968.83019
[35] Bianchi, E., Loop quantum gravity a la Aharonov-Bohm, Gen. Relativ. Gravit., 46, 1668, (2014) · Zbl 1286.83040
[36] Haggard, HM; Han, M.; Kamiński, W.; Riello, A., SL(2, C) Chern-Simons theory, a non-planar graph operator, and 4D loop quantum gravity with a cosmological constant: semiclassical geometry, Nucl. Phys. B, 900, 1-79, (2015) · Zbl 1331.83025
[37] Han, M., 4D quantum geometry from 3D supersymmetric gauge theory and holomorphic block, JHEP, 01, 065, (2016)
[38] Haggard, HM; Han, M.; Kamiński, W.; Riello, A., Four-dimensional quantum gravity with a cosmological constant from three-dimensional holomorphic blocks, Phys. Lett. B, 752, 258-262, (2016) · Zbl 1360.83052
[39] Han, M.; Huang, Z., Loop-quantum-gravity simplicity constraint as surface defect in complex Chern-Simons theory, Phys. Rev. D, 95, 104031, (2017)
[40] Penrose, R.: Angular momentum: an approach to combinatorial space-time. In: Bastin, T. (ed.) Quantum Theory and Beyond. Cambridge University Press, pp 151-180 (1971)
[41] Pietri, R.; Petronio, C., Feynman diagrams of generalized matrix models and the associated manifolds in dimension 4, J. Math. Phys., 41, 6671-6688, (2000) · Zbl 0971.81101
[42] Freidel, L., Group field theory: an overview, Int. J. Theor. Phys., 44, 1769-1783, (2005) · Zbl 1100.83010
[43] Ben Geloun, J.; Gurau, R.; Rivasseau, V., EPRL/FK group field theory, Europhys. Lett., 92, 60008, (2010)
[44] Krajewski, T.; Magnen, J.; Rivasseau, V.; Tanasa, A.; Vitale, P., Quantum corrections in the group field theory formulation of the EPRL/FK models, Phys. Rev. D, 82, 124069, (2010)
[45] Oriti, D.; Ryan, JP; Thürigen, J., Group field theories for all loop quantum gravity, New J. Phys., 17, 023042, (2015)
[46] Kisielowski, M.; Lewandowski, J.; Puchta, J., Feynman diagrammatic approach to spin foams, Class. Quantum Gravity, 29, 015009, (2012) · Zbl 1235.83047
[47] Regge, T., General relativity without coordinates, Il Nuovo Cimento (1955-1965), 19, 558-571, (1961)
[48] Aharonov, Y.; Bohm, D., Significance of electromagnetic potentials in the quantum theory, Phys. Rev., 115, 485-491, (1959) · Zbl 0099.43102
[49] Sorkin, R.D.: Development of simplectic methods for the metrical and electromagnetic fields. Ph.D. thesis, California Institute of Technology (1974)
[50] Friedberg, R.; Lee, TD, Derivation of Regge’s action from Einstein’s theory of general relativity, Nucl. Phys., B242, 145, (1984)
[51] Gibbons, GW; Hawking, SW, Action integrals and partition functions in quantum gravity, Phys. Rev., D15, 2752, (1977)
[52] York, JW, Role of conformal three-geometry in the dynamics of gravitation, Phys. Rev. Lett., 28, 1082, (1972)
[53] Aref’eva, IY, Non-Abelian Stokes formula, Theor. Math. Phys., 43, 353-356, (1980) · Zbl 0449.53028
[54] Montvay, I., Münster, G.: Quantum Fields on a Lattice. Cambridge University Press, Cambridge (1997)
[55] Thurston, W.P., Levy, S.: Three-Dimensional Geometry and Topology, vol. 1. Princeton university press, Princeton (1997)
[56] Khatsymovsky, V., Tetrad and self-dual formulations of Regge calculus, Class. Quantum Gravity, 6, l249-l255, (1989) · Zbl 0688.53038
[57] Bander, M., Functional measure for lattice gravity, Phys. Rev. Lett., 57, 1825, (1986)
[58] Pontryagin, L.S.: Foundations of Combinatorial Topology. Courier Corporation, Chelmsford (1999) · Zbl 0049.39901
[59] Lee, J.: Introduction to Topological Manifolds, vol. 940. Springer, Berlin (2010)
[60] Pseudo-manifold. Encyclopedia of mathematics: http://www.encyclopediaofmath.org/index.php?title=Pseudo-manifold&oldid=24541. Accessed 13 Jan 2017
[61] Spanier, E.H.: Algebraic Topology, vol. 55. Springer, Berlin (1994) · Zbl 0810.55001
[62] Lazebnik, F.: On a regular simplex in \(\mathbb{R}^{n}\). http://www.math.udel.edu/ lazebnik/papers/simplex.pdf. Accessed 12 Feb 2017
[63] Freudenthal, H., Simplizialzerlegungen von beschrankter flachheit, Ann. Math. Second Ser., 43, 580-582, (1942) · Zbl 0060.40701
[64] Edelsbrunner, H.; Grayson, DR, Edgewise subdivision of a simplex, Discrete Comput. Geom., 24, 707-719, (2000) · Zbl 0968.51016
[65] Wieland, WM, A new action for simplicial gravity in four dimensions, Class. Quantum Gravity, 32, 015016, (2015) · Zbl 1309.83038
[66] Minkowski, H., Allgemeine lehrsätze über die convexen polyeder. Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse, 1897, 198-220, (1897) · JFM 28.0427.01
[67] Kobayashi, S., Nomizu, K.: Foundations of Differential Geometry, vol. 1. Wiley, New York (1963) · Zbl 0119.37502
[68] Barrett, JW; Foxon, TJ, Semiclassical limits of simplicial quantum gravity, Class. Quantum Gravity, 11, 543, (1994) · Zbl 0797.53060
[69] Cheeger, J.; etal., Spectral geometry of singular Riemannian spaces, J. Differ. Geom., 18, 575-657, (1983) · Zbl 0529.58034
[70] Wintgen, P.: Normal cycle and integral curvature for polyhedra in Riemannian manifolds. In: Soos, Gy., Szenthe, J. (eds.) Differential Geometry. North-Holland Publishing Co., Amsterdam (1982) · Zbl 0509.53037
[71] Cheeger, J.; Muller, W.; Schrader, R., On the curvature of piecewise flat spaces, Commun. Math. Phys., 92, 405, (1984) · Zbl 0559.53028
[72] Cattaneo, A.S., Mnev, P., Reshetikhin, N.: A cellular topological field theory (2017) arXiv:1701.05874 · Zbl 1315.81095
[73] Dittrich, B.; Geiller, M., A new vacuum for loop quantum gravity, Class. Quantum Gravity, 32, 112001, (2015) · Zbl 1320.83030
[74] Dittrich, B.; Geiller, M., Flux formulation of loop quantum gravity: classical framework, Class. Quantum Gravity, 32, 135016, (2015) · Zbl 1327.83111
[75] Bahr, B., Dittrich, B., Geiller, M.: A new realization of quantum geometry (2015) arXiv:1506.08571 · Zbl 1320.83030
[76] Dittrich, B.; Geiller, M., Quantum gravity kinematics from extended TQFTs, New J. Phys., 19, 013003, (2017)
[77] Delcamp, C.; Dittrich, B., From 3D TQFTs to 4D models with defects, J. Math. Phys., 58, 062302, (2017) · Zbl 1368.81140
[78] Reisenberger, MP, Classical Euclidean general relativity from ’left-handed area = right-handed area’, Class. Quantum Gravity, 16, 1357, (1999) · Zbl 0964.83006
[79] Ding, Y.; Han, M.; Rovelli, C., Generalized spinfoams, Phys. Rev. D, 83, 124020, (2011)
[80] Wieland, W., Discrete gravity as a topological gauge theory with light-like curvature defects, JHEP, 5, 142, (2017) · Zbl 1380.83229
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.