×

Transitions in the web of heterotic vacua. (English) Zbl 1215.81076

Summary: We analyze transitions between heterotic vacua with distinct gauge bundles using two complementary methods – the effective four-dimensional field theory and the corresponding geometry. From the viewpoint of effective field theory, such transitions occur between flat directions of the potential energy associated with heterotic stability walls. Geometrically, this branch structure corresponds to smooth deformations of the gauge bundle coupled to the chamber structure of Kähler moduli space. We demonstrate how such transitions can change important properties of the effective theory, including the gauge symmetry and the massless spectrum. Geometrically, this study is divided into deformations of the vector bundle which preserve the rank of the gauge bundle and those which change the rank. In the latter case, our results provide explicit solutions to a class of Li-Yau type deformation problems. Finally, we use the framework of stability walls and their effective theory to study Donaldson-Thomas invariants on Calabi-Yau threefolds.

MSC:

81T30 String and superstring theories; other extended objects (e.g., branes) in quantum field theory
32G13 Complex-analytic moduli problems
32Q15 Kähler manifolds
32Q25 Calabi-Yau theory (complex-analytic aspects)
14J32 Calabi-Yau manifolds (algebro-geometric aspects)
PDF BibTeX XML Cite
Full Text: DOI arXiv

References:

[1] Candelas, Nucl. Phys. B 258 pp 46– (1985)
[2] Witten, Nucl. Phys. B 268 pp 79– (1986)
[3] M.B. Green J.H. Schwarz E. Witten
[4] Lukas, Nucl. Phys. B 532 pp 43– (1998) · Zbl 1047.81551
[5] Lukas, Phys. Rev. D 59 pp 086001– (1999)
[6] Lukas, Nucl. Phys. B 552 pp 246– (1999) · Zbl 0958.81117
[7] Lukas, Phys. Rev. D 59 pp 106005– (1999)
[8] Donagi, J. High Energy Phys. 0412 pp 054– (2004)
[9] He, Mod. Phys. Lett. A 20 pp 1483– (2005) · Zbl 1102.81062
[10] Donagi, Phys. Lett. B 598 pp 279– (2004) · Zbl 1247.14044
[11] Donagi, Phys. Lett. B 618 pp 259– (2005) · Zbl 1247.81365
[12] Donagi, J. High Energy Phys. 0506 pp 070– (2005)
[13] Donagi, J. High Energy Phys. 0401 pp 022– (2004) · Zbl 1243.14034
[14] Braun, J. High Energy Phys. 0603 pp 006– (2006) · Zbl 1226.81169
[15] Braun, J. High Energy Phys. 0601 pp 025– (2006)
[16] Braun, J. High Energy Phys. 0412 pp 062– (2004)
[17] Donagi, J. High Energy Phys. 0506 pp 070– (2005)
[18] Blaszczyk, J. High Energy Phys. 1009 pp 065– (2010) · Zbl 1291.81296
[19] Nibbelink, J. High Energy Phys. 0903 pp 005– (2009)
[20] Greene, Nucl. Phys. B 278 pp 667– (1986)
[21] Greene, Phys. Lett. B 180 pp 69– (1986)
[22] Greene, Nucl. Phys. B 292 pp 606– (1987)
[23] Candelas, Fortschr. Phys. 58 pp 383– (2010) · Zbl 1194.14062
[24] Braun, Fortschr. Phys. 58 pp 467– (2010) · Zbl 1194.14061
[25] Sharpe, Adv. Theor. Math. Phys. 2 pp 1441– (1999) · Zbl 1059.14500
[26] Anderson, J. High Energy Phys. 0909 pp 026– (2009)
[27] Anderson, Phys. Lett. B 677 pp 190– (2009)
[28] Anderson, J. High Energy Phys. 1005 pp 086– (2010) · Zbl 1287.81087
[29] S.K. Donaldson R.P. Thomas
[30] Thomas, J. Differ. Geom. 54 pp 2– (2000)
[31] Ellingsrud, J. Reine Angew. Math. 467 pp 1– (1995)
[32] Qin, Manuscr. Math. 72 pp 163– (1991) · Zbl 0751.14002
[33] W.P. Li Z. Qin
[34] Li, Int. J. Math. 14 pp 1097– (2003) · Zbl 1083.14520
[35] Friedman, Commun. Anal. Geom. 3 pp 11– (1995) · Zbl 0861.14032
[36] Maulik, Compositio Mathematica 142 pp 1263– (2006) · Zbl 1108.14046
[37] Maulik, Compositio Mathematica 142 pp 1286– (2006) · Zbl 1108.14047
[38] Lukas, J. High Energy Phys. 0001 pp 010– (2000) · Zbl 0989.81595
[39] Blumenhagen, J. High Energy Phys. 0506 pp 020– (2005)
[40] Blumenhagen, Nucl. Phys. B 751 pp 186– (2006) · Zbl 1192.81257
[41] R. Blumenhagen S. Moster R. Reinbacher T. Weigand
[42] Kuriyama, Phys. Rev. D 79 pp 075002– (2009)
[43] R. Hartshorne
[44] D. Huybrechts M. Lehn
[45] Huybrechts, Commun. Math. Phys. 171 pp 139– (1995) · Zbl 0852.14011
[46] J. Li S.T. Yau
[47] Uhlenbeck, Commun. Pure Appl. Math. 39 pp 257– (1986) · Zbl 0615.58045
[48] Donaldson, Proc. R. Soc. Lond. A, Math. Phys. Sci. 3 pp 1– (1985) · Zbl 0529.53018
[49] R. Hartshorne
[50] P. Griffith J. Harris
[51] Braun, Phys. Lett. B 618 pp 252– (2005) · Zbl 1247.81349
[52] Braun, J. High Energy Phys. 0506 pp 039– (2005)
[53] Anderson, J. High Energy Phys. 1006 pp 107– (2010) · Zbl 1288.81086
[54] Braun, J. High Energy Phys. 0807 pp 120– (2008)
[55] Braun, J. High Energy Phys. 0805 pp 080– (2008)
[56] Anderson, Commun. Math. Phys. 297 pp 95– (2010) · Zbl 1203.81130
[57] L.B. Anderson J. Gray A. Lukas B. Ovrut
[58] L.B. Anderson J. Gray A. Lukas B. Ovrut
[59] L.B. Anderson J. Gray B. Ovrut
[60] Anderson, J. High Energy Phys. 0707 pp 049– (2007)
[61] Anderson, J. High Energy Phys. 0807 pp 104– (2008)
[62] L.B. Anderson
[63] C. Okonek M. Schneider H. Spindler
[64] Braun, J. High Energy Phys. 0605 pp 043– (2006)
[65] Bouchard, Phys. Lett. B 633 pp 783– (2006) · Zbl 1247.81348
[66] Braun, Adv. Theor. Math. Phys. 10 pp 4– (2006) · Zbl 1101.81086
[67] Ambroso, J. High Energy Phys. 0910 pp 011– (2009)
[68] Ambroso, Int. J. Mod. Phys. A 25 pp 2631– (2010) · Zbl 1193.81080
[69] M. Ambroso B.A. Ovrut
[70] Anderson, J. High Energy Phys. 1002 pp 054– (2010) · Zbl 1270.81146
[71] Langer, Ann. Math. 159 pp 1– (2004) · Zbl 1080.14014
[72] Langer, Duke. Math. J. 124 pp 3– (2004) · Zbl 1086.14036
[73] L. Gottsche
[74] D. Joyce
[75] Friedman, J. Alg. Geom. 8 pp 279– (1999)
[76] Bridgeland, J. Alg. Geom. 11 pp 629– (2002) · Zbl 1066.14047
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.