×

Calabi-Yau geometries: algorithms, databases and physics. (English) Zbl 1277.81059

Summary: With a bird’s-eye view, we survey the landscape of Calabi-Yau threefolds, compact and noncompact, smooth and singular. Emphasis will be placed on the algorithms and databases which have been established over the years, and how they have been useful in the interaction between the physics and the mathematics, especially in string and gauge theories. A skein which runs through this review will be algorithmic and computational algebraic geometry and how, implementing its principles on powerful computers and experimenting with the vast mathematical data, new physics can be learnt. It is hoped that this interdisciplinary glimpse will be of some use to the beginning student.

MSC:

81R05 Finite-dimensional groups and algebras motivated by physics and their representations
14J32 Calabi-Yau manifolds (algebro-geometric aspects)
81-02 Research exposition (monographs, survey articles) pertaining to quantum theory
81T30 String and superstring theories; other extended objects (e.g., branes) in quantum field theory
81T13 Yang-Mills and other gauge theories in quantum field theory
PDF BibTeX XML Cite
Full Text: DOI arXiv

References:

[1] DOI: 10.1016/0550-3213(85)90602-9
[2] He Y.-H., Adv. High Energy Phys. 2012 pp 431898–
[3] DOI: 10.1016/0370-2693(86)90137-1
[4] DOI: 10.4310/ATMP.2008.v12.n2.a6 · Zbl 1144.81499
[5] DOI: 10.1016/0370-1573(81)90092-2
[6] DOI: 10.1016/S0927-6505(01)00121-9
[7] Braun V., J. High Energy Phys. 0610 pp 041–
[8] DOI: 10.1016/0550-3213(88)90619-0
[9] DOI: 10.1142/1410
[10] DOI: 10.1016/0550-3213(96)00011-9 · Zbl 0925.14004
[11] DOI: 10.1007/s002200050154 · Zbl 0919.14010
[12] DOI: 10.4310/ATMP.2001.v5.n1.a4 · Zbl 1025.81040
[13] DOI: 10.4310/ATMP.2001.v5.n3.a5 · Zbl 1027.14005
[14] Donagi R., J. High Energy Phys. 0412 pp 054–
[15] Donagi R., J. High Energy Phys. 0506 pp 070–
[16] DOI: 10.1016/j.physletb.2005.05.004 · Zbl 1247.81365
[17] DOI: 10.1142/S0217751X06025109 · Zbl 1090.81063
[18] DOI: 10.1016/j.geomphys.2007.07.007 · Zbl 1152.14039
[19] Blumenhagen R., J. High Energy Phys. 0506 pp 020–
[20] DOI: 10.4310/ATMP.2006.v10.n4.a3 · Zbl 1101.81086
[21] DOI: 10.1002/prop.200610327 · Zbl 1131.81028
[22] DOI: 10.4310/ATMP.2010.v14.n2.a1 · Zbl 1213.81191
[23] DOI: 10.1016/0550-3213(88)90352-5
[24] DOI: 10.1016/0550-3213(88)90173-3
[25] DOI: 10.1142/S0217732394002094 · Zbl 1020.14501
[26] DOI: 10.1016/0550-3213(96)00242-8 · Zbl 0925.14005
[27] DOI: 10.1016/0550-3213(96)00369-0 · Zbl 0925.14007
[28] DOI: 10.4310/AJM.1997.v1.n2.a1 · Zbl 0927.14006
[29] Gabella M., J. High Energy Phys. 0812 pp 027–
[30] DOI: 10.1016/S0550-3213(97)00582-8 · Zbl 0896.14026
[31] DOI: 10.1142/S0129055X0200120X · Zbl 1079.14534
[32] DOI: 10.1016/0550-3213(90)90185-G · Zbl 0962.14029
[33] Cicoli M., J. High Energy Phys. 1202 pp 002–
[34] Taylor W., J. High Energy Phys. 1208 pp 032–
[35] Braun V., J. High Energy Phys. 1301 pp 016–
[36] DOI: 10.1002/prop.200900105 · Zbl 1194.14062
[37] DOI: 10.1002/prop.200900106 · Zbl 1194.14061
[38] Qureshi M. I., Adv. High Energy Phys. 2012 pp 547317–
[39] DOI: 10.1142/S0217732310032731 · Zbl 1184.81107
[40] DOI: 10.1016/0550-3213(96)00308-2 · Zbl 0925.81180
[41] Braun V., J. High Energy Phys. 0605 pp 043–
[42] DOI: 10.1016/j.physletb.2005.12.042 · Zbl 1247.81348
[43] Horrocks G., Proc. Lond. Math. Soc. 14 pp 689–
[44] DOI: 10.1007/BF01168047 · Zbl 0395.14007
[45] Anderson L. B., J. High Energy Phys. 0707 pp 049–
[46] Anderson L. B., J. High Energy Phys. 0807 pp 104–
[47] DOI: 10.1007/s00220-010-1033-8 · Zbl 1203.81130
[48] Anderson L. B., J. High Energy Phys. 1002 pp 054–
[49] Anderson L. B., J. High Energy Phys. 1206 pp 113–
[50] DOI: 10.1103/PhysRevD.84.106005
[51] Anderson L. B., J. High Energy Phys. 0909 pp 026–
[52] He Y.-H., J. High Energy Phys. 1211 pp 119–
[53] He Y.-H., J. High Energy Phys. 1005 pp 071–
[54] He Y.-H., J. High Energy Phys. 1112 pp 039–
[55] DOI: 10.1103/PhysRevD.86.101901
[56] Blumenhagen R., Adv. High Energy Phys. 2011 pp 152749–
[57] DOI: 10.4310/ATMP.1998.v2.n2.a1 · Zbl 0914.53047
[58] DOI: 10.1016/j.nuclphysbps.2007.06.002
[59] Verlinde H., J. High Energy Phys. 0701 pp 106–
[60] Gmeiner F., J. High Energy Phys. 0601 pp 004–
[61] DOI: 10.1016/S0550-3213(03)00256-6 · Zbl 01914463
[62] DOI: 10.1103/PhysRevLett.88.071602
[63] DOI: 10.1016/S0370-2693(01)00150-2 · Zbl 01601926
[64] Aldazabal G., J. High Energy Phys. 0008 pp 002–
[65] DOI: 10.1016/S0550-3213(97)00282-4 · Zbl 0935.81058
[66] DOI: 10.1016/S0550-3213(98)00495-7 · Zbl 1078.81559
[67] DOI: 10.1103/PhysRevLett.80.4855 · Zbl 0947.81096
[68] DOI: 10.1103/PhysRevD.55.6382
[69] DOI: 10.1017/S030500410001269X · JFM 60.0599.01
[70] DOI: 10.1090/pspum/037/604577
[71] Blichfeldt H. F., Finite Collineation Groups (1917)
[72] Hanany A., J. High Energy Phys. 9902 pp 013–
[73] Hanany A., J. High Energy Phys. 0102 pp 027–
[74] Del Pezzo P., Rend. R. Acc. delle Scienze Fisiche e Mat. di Napoli 8 pp 162–
[75] DOI: 10.4310/ATMP.2001.v5.n4.a5 · Zbl 1119.14302
[76] Herzog C. P., J. High Energy Phys. 0309 pp 060–
[77] Herzog C. P., J. High Energy Phys. 0404 pp 069–
[78] Herzog C. P., J. High Energy Phys. 0602 pp 061–
[79] Hanany A., J. High Energy Phys. 0607 pp 001–
[80] Aspinwall P. S., J. High Energy Phys. 0412 pp 042–
[81] DOI: 10.4310/ATMP.2003.v7.n6.a6 · Zbl 1069.81051
[82] Dolan M. J., J. High Energy Phys. 1110 pp 024–
[83] Cicoli M., J. High Energy Phys. 1209 pp 019–
[84] Malyshev D., Adv. High Energy Phys. 2011 pp 630892–
[85] Benvenuti S., J. High Energy Phys. 0604 pp 032–
[86] DOI: 10.1016/0550-3213(93)90033-L · Zbl 0910.14020
[87] DOI: 10.1016/S0550-3213(97)00517-8 · Zbl 0925.81266
[88] DOI: 10.1016/S0550-3213(99)00646-X · Zbl 0951.81037
[89] DOI: 10.1016/S0550-3213(00)00699-4 · Zbl 0972.81138
[90] Feng B., J. High Energy Phys. 0108 pp 040–
[91] Feng B., J. High Energy Phys. 0112 pp 035–
[92] DOI: 10.4310/ATMP.2004.v8.n6.a3 · Zbl 1095.53034
[93] Benvenuti S., J. High Energy Phys. 0506 pp 064–
[94] Beasley C. E., J. High Energy Phys. 0112 pp 001–
[95] DOI: 10.1016/S0550-3213(02)00078-0 · Zbl 0992.83072
[96] DOI: 10.1103/PhysRevD.70.046006
[97] DOI: 10.1090/S0894-0347-01-00385-X · Zbl 1021.16017
[98] Franco S., J. High Energy Phys. 0601 pp 096–
[99] Franco S., J. High Energy Phys. 0601 pp 128–
[100] DOI: 10.4310/ATMP.2008.v12.n3.a2 · Zbl 1144.81501
[101] Garcia-Etxebarria I., J. High Energy Phys. 0606 pp 055–
[102] DOI: 10.1142/S0217751X07036877 · Zbl 1141.81328
[103] DOI: 10.1002/prop.200810536 · Zbl 1150.81017
[104] DOI: 10.1063/1.4772976 · Zbl 1290.81067
[105] Hanany A., J. High Energy Phys. 1106 pp 056–
[106] Jejjala V., J. High Energy Phys. 1103 pp 065–
[107] DOI: 10.4310/CNTP.2007.v1.n2.a1 · Zbl 1230.14050
[108] DOI: 10.4310/ATMP.2001.v5.n5.a1 · Zbl 1019.81040
[109] DOI: 10.1016/j.nuclphysb.2006.03.037 · Zbl 1178.81239
[110] Bhattacharya J., J. High Energy Phys. 0802 pp 064–
[111] Benvenuti S., J. High Energy Phys. 0711 pp 050–
[112] Feng B., J. High Energy Phys. 0703 pp 090–
[113] DOI: 10.1016/0001-8708(78)90045-2 · Zbl 0384.13012
[114] Forcella D., J. High Energy Phys. 0808 pp 012–
[115] Mehta D., J. High Energy Phys. 1207 pp 018–
[116] DOI: 10.1016/j.physletb.2006.05.026 · Zbl 1248.81172
[117] DOI: 10.1016/j.nuclphysb.2006.06.001 · Zbl 1214.81271
[118] DOI: 10.1016/j.cpc.2008.08.009 · Zbl 1198.81156
[119] Gray J., J. High Energy Phys. 0707 pp 023–
[120] Gray J., Adv. High Energy Phys. 2011 pp 217035–
[121] DOI: 10.1016/0550-3213(96)00095-8 · Zbl 1002.81567
[122] Gray J., J. High Energy Phys. 0805 pp 099–
[123] Hanany A., J. High Energy Phys. 1103 pp 096–
[124] DOI: 10.1016/j.nuclphysb.2009.09.016 · Zbl 1196.81236
[125] DOI: 10.1016/j.nuclphysb.2012.02.018 · Zbl 1246.81419
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.