×

A generalization of local class field theory by using K-groups. II. (English) Zbl 0411.12013


MSC:

11S70 \(K\)-theory of local fields
11S31 Class field theory; \(p\)-adic formal groups

Citations:

Zbl 0199.555
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] H. Bass and J. Tate: The Milnor ring of a global field. Lect. Notes in Math., Springer-Verlag, Berlin, vol.342, pp. 349-446 (1972). · Zbl 0299.12013
[2] S. Bloch: Algebraic K-theory and crystalline cohomology. Publ. Math. I.H.E.S., 47, 187-268 (1978). · Zbl 0388.14010
[3] D. Grayson: Higher algebraic K-theory. II. Lect. Notes in Math., Springer-Verlag, Berlin, vol.551, pp. 217-240 (1976). · Zbl 0362.18015
[4] A. Grothendieck: Elements de geometrie algebrique. IV. Premiere partie, Publ. Math. I.H.E.S., 20 (1964).
[5] K. Kato: A generalization of local class field theory by using K-groups. I. Proc. Japan Acad., 53, 140-143 (1977). · Zbl 0436.12011
[6] J.-L. Loday: K-theorie algebrique et representations de groupes. Ann. Sci. Ec. Norm. Sup., 4eme serie, 9(3) (1976). · Zbl 0362.18014
[7] J. Milnor: Algebraic K-theory and quadratic forms. Invent. Math., 9, 318- 344 (1970). · Zbl 0199.55501
[8] A.-N. Parsin: Class field theory for arithmetical schemes (preprint).
[9] D. Quillen: Higher algebraic K-theory. I. Lect. Notes in Math., Springer-Verlag, Berlin, vol.341, pp. 85-147 (1972). · Zbl 0292.18004
[10] J.-P. Serre: Cohomologie Galoisienne. Springer-Verlag, Berlin (1964). · Zbl 0128.26303
[11] J. Tate: Symbols in arithmetic. Actes du Congres International des Mathematiciens 1970, Gauthier-Villars, Paris, vol.1, pp. 201-211 (1971). · Zbl 0229.12013
[12] E. Witt: Zyklische Korper und Algebren der Charakteristik p vom Grade pn. J. Reine Angew. Math., 176, 126-140 (1936). · JFM 62.1112.03
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.