×

Open problems on syzygies and Hilbert functions. (English) Zbl 1187.13010

The authors give a selected list a number of open problems and conjectures on Hilbert functions and syzygies (some of them are closely related to algebraic geometry, combinatorics, and hyperplane arrangements) which they see as most exciting, or important, or popular. The problems are classified in three types: Conjectures, Problems, and Open-Ended Problems.

MSC:

13D02 Syzygies, resolutions, complexes and commutative rings
13D40 Hilbert-Samuel and Hilbert-Kunz functions; Poincaré series
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] D. Anick, Counterexample to a conjecture of Serre , Ann. Math., 115 (1982), 1-33. · Zbl 0454.55004
[2] A. Aramova, L. L. Avramov, J. Herzog, Resolutions of monomial ideals and cohomology over exterior algebras , Trans. Amer. Math. Soc., 352 (2000), 579-594. JSTOR: · Zbl 0930.13011
[3] L. L. Avramov, Infinite free resolutions, in Six lectures on commutative algebra (Bellaterra, 1996 ), Progr. Math., 166, Birkhuser, Basel, (1998), 1-118. · Zbl 0934.13008
[4] ——–, Local algebra and rational homotopy , Astérisque, 113 -114 (1984), 15-43. · Zbl 0552.13003
[5] ——–, Homological asymptotics of modules over local rings, in Commutative Algebra , M. Hochster, C. Huneke and J. Sally, Editors, Math. Sci. Res. Inst. Publ. 15 Springer, New York, (1989), 33-62. · Zbl 0788.18010
[6] ——–, Problems on infinite free resolutions, Free Resolutions in Commutative Algebra and Algebraic Geometry , D. Eisenbud and C. Huneke, Editors, Jones and Bartlett Publishers, Boston, London, (1992), 3-23. · Zbl 0778.13010
[7] L. L. Avramov, R.-O. Buchweitz, Lower bounds for Betti numbers , Compositio Math., 86 , (1993), 147-158. · Zbl 0786.13004
[8] ——–, Homological algebra modulo a regular sequence with special attention to codimension two , J. Algebra, 230 (2000), 24-67. · Zbl 1011.13007
[9] L. L. Avramov, D. Eisenbud, Regularity of modules over a Koszul algebra , J. Algebra, 153 (1992), 85-90. · Zbl 0770.13006
[10] L. Avramov, D. Grayson, Resolutions and cohomology over complete intersections, in Computations in algebraic geometry with Macaulay 2 , Algorithms Comput. Math. 8 Springer, Berlin, (2002), 131-178. · Zbl 0994.13006
[11] L. L. Avramov, S. Iyengar, and L. Sega, Free resolutions over short local rings , · Zbl 1153.13011
[12] L. L. Avramov, I. Peeva, Finite regularity and Koszul algebras , American J. Math., 123 (2001), 275-281. · Zbl 1053.13500
[13] L. L. Avramov, Li-Chuan Sun, Cohomology operators defined by a deformation , J. Algebra, 204 (1998), 684-710. · Zbl 0915.13009
[14] D. Bayer and D. Mumford, What can be computed in algebraic geometry? in Computational Algebraic Geometry and Commutative Algebra , D. Eisenbud and L. Robbiano (eds.), Cambridge Univ. Press, Cambridge, (1993), 1-48. · Zbl 0846.13017
[15] D. Bayer and M. Stillman, MACAULAY –\thinspacea system for computation, algebraic geometry and commutative algebra, (1997), available from www.math.columbia.edu/\(\tilde\;\)bayer/Macaulay.
[16] ——–, On the complexity of computing syzygies , J. Symbolic Comput., 6 (1988), 135–147. · Zbl 0667.68053
[17] A. Berglund: Poincarè, series of monomial rings , J. Algebra, 295 (2006), 211-230. · Zbl 1101.13023
[18] A. Bertram, L. Ein, R. Lazarsfeld, Vanishing theorems, a theorem of Severi, and the equations defining projective varieties , J. Amer. Math. Soc., 4 (1991), 587–602. JSTOR: · Zbl 0762.14012
[19] M. Boij, J. Söderberg, Graded Betti numbers of Cohen-Macaulay modules and the Multiplicity conjecture , J. London Math. Soc., · Zbl 1189.13008
[20] ——–, Betti numbers of graded modules and the Multiplicity Conjecture in the non-Cohen-Macaulay case , · Zbl 1259.13009
[21] W. Bruns, J. Gubeladze, and N.Trung, Problems and algorithms for affine semigroups , Semigroup Forum, 64 (2002), 180-212. · Zbl 1018.20048
[22] W. Bruns, T. Römer, \(h\)-vectors of Gorenstein polytopes , J. Combin. Theory Ser. A, 114 (2007), 65-76. · Zbl 1108.52013
[23] G. Caviglia, The pinched Veronese is Koszul , · Zbl 1213.13003
[24] H. Charalambous and G. Evans, Problems on Betti numbers of finite length modules , Free resolutions in commutative algebra and algebraic geometry (Sundance, UT, 1990), Res. Notes Math. 2, Jones and Bartlett, Boston, (1992), 25-33. · Zbl 0767.13005
[25] M. Chardin, Regularity, in Syzygies and Hilbert functions , I. Peeva editor, Lect. Notes Pure Appl. Math., 254 (2007), CRC Press.
[26] M. Chardin and C. D’Cruz, Castelnuovo-Mumford regularity: examples of curves and surfaces , J. ALgebra, 270 (2003), 347-360. · Zbl 1056.14065
[27] M. Chardin, V. Gasharov, and I. Peeva, Maximal Betti numbers , Proc. Amer. Math. Soc., 130 (2002), 1877–1880. JSTOR: · Zbl 0987.13004
[28] M. Chardin and B. Ulrich, Liaison and Castelnuovo-Mumford regularity , Amer. J. Math., 124 (2002), 1103-1124. · Zbl 1029.14016
[29] G. Clements and B. Lindström, A generalization of a combinatorial theorem of Macaulay , J. Combinatorial Theory, 7 (1969), 230-238. · Zbl 0186.01704
[30] A. Conca, Gröbner basis for spaces of quadrics of low codimension , Adv. Appl. Math., 24 (2000), 111-124. · Zbl 1046.13001
[31] A. Conca and J. Herzog, Castelnuovo-Mumford regularity of products of ideals , Collect. Math., 54 (2003), 137-152. · Zbl 1074.13004
[32] H. Derksen and J. Sidman, A sharp bound for the Castelnuovo-Mumford regularity of subspace arrangements , Adv. Math., 172 (2002), 151-157. · Zbl 1040.13009
[33] C. Dodd, A. Marks, V. Meyerson, Victor, and B. Richert, Minimal Betti numbers , Comm. Algebra, 35 (2007), 759–772. · Zbl 1122.13002
[34] J. Eagon and V. Reiner, Resolutions of Stanley-Reisner rings and Alexander duality , J. Pure Appl. Algebra, 130 (1998), 265-275. · Zbl 0941.13016
[35] D. Eisenbud, Free resolutions , commutative algebra and algebraic geometry, (Sundance, UT, 1990), Res. Notes Math. 2, Jones and Bartlett, Boston, MA, (1992), 51-78. · Zbl 0792.14015
[36] ——–, Green’s conjecture: an orientation for algebraists , Free resolutions in commutative algebra and algebraic geometry (Sundance, UT, 1990), Res. Notes Math. 2, Jones and Bartlett, Boston, MA, (1992), 51-78. · Zbl 0792.14015
[37] ——–, Homological algebra on a complete intersection with an application to group representations , Trans. Amer. Math. Soc., 260 (1980), 35-64. JSTOR: · Zbl 0444.13006
[38] ——–, Lectures on the geometry of syzygies , Trends in commutative algebra, Cambridge Univ. Press, Cambridge, Math. Sci. Res. Inst. Publ., 51 (2004), 115-152. · Zbl 1115.13019
[39] ——–, The geometry of syzygies. A second course in commutative algebra and algebraic geometry , Graduate Texts in Mathematics, 229 Springer-Verlag, New York, (2005). · Zbl 1066.14001
[40] ——–, An exterior view of modules and sheaves , Advances in algebra and geometry, (Hyderabad, 2001), Hindustan Book Agency, New Delhi, (2003), 209–216. · Zbl 1031.14006
[41] ——–, Periodic resolutions over exterior algebras, Special issue in celebration of Claudio Procesi’s 60th birthday , J. Algebra, 258 (2002), 348-361. · Zbl 1081.13005
[42] D. Eisenbud, G. Floystad, and F.-O. Schreyer, Sheaf cohomology and free resolutions over exterior algebras , Trans. Amer. Math. Soc., 355 (2003), 4397-4426. JSTOR: · Zbl 1063.14021
[43] D. Eisenbud, G. Floystad, and J. Weyman, The existence of pure free resolutions ,
[44] D. Eisenbud and S. Goto, Linear free resolutions and minimal multiplicity , J. Algebra, 88 (1984), 89-133. · Zbl 0531.13015
[45] D. Eisenbud, M. Green, and J. Harris, Higher Castelnuovo Theory , Astérisque, 218 (1993), 187-202. · Zbl 0819.14001
[46] D. Eisenbud, M. Green, K. Hulek and S. Popescu, Restricting linear syzygies: algebra and geometry , Compositio Math., 141 (2005), 1460-1478. · Zbl 1086.14044
[47] D. Eisenbud and C. Huneke, A finiteness property of infinite resolutions , J. Pure Appl. Algebra, 201 (2005), 284-294. \vfill · Zbl 1091.13012
[48] D. Eisenbud, C. Huneke, and B. Ulrich, The regularity of Tor and graded Betti numbers , Amer. J. Math., 128 (2006), 573-605. · Zbl 1105.13017
[49] D. Eisenbud, I. Peeva, Standard decomposition in generic coordinates , · Zbl 1273.13036
[50] D. Eisenbud, A. Reeves, and B. Totaro, Initial ideals, Veronese subrings, and rates of algebras , Adv. Math., 109 (1994), 168-187. · Zbl 0839.13013
[51] D. Eisenbud and F-O. Schreyer, Betti numbers of graded modules and cohomology of vector bundles , · Zbl 1213.13032
[52] M. Falk, and R. Randell, On the homotopy theory of arrangements. II, Arrangements—Tokyo 1998, Adv. Stud. Pure Math., 27 Kinokuniya, Tokyo, (2000), 93-125. · Zbl 0990.32006
[53] C. Francisco and B. Richert, Lex-plus-powers ideals , Syzygies and Hilbert functions, I. Peeva editor, Lect. Notes Pure Appl. Math., 254 (2007), CRC Press. · Zbl 1125.13008
[54] R. Fröberg, An inequality for Hilbert series of graded algebras , Math. Scand., 46 (1985), 117-144. · Zbl 0582.13007
[55] V. Gasharov, N. Horwitz, and I. Peeva, Hilbert functions over toric rings , special volume of the Michigan Math. J., dedicated to Mel Hochster. · Zbl 1183.13031
[56] V. Gasharov and I. Peeva, Boundedness versus periodicity , Trans. Amer. Math. Soc., 320 (1990), 569–580. JSTOR: · Zbl 0706.13020
[57] V. Gasharov, I. Peeva, and V. Welker, Coordinate subspace arrangements and monomial ideals , Proceedings of the Osaka meeting on Computational Commutative Algebra and Combinatorics, Advanced Studies in Pure Mathematics, 33 (2002), 65-74. · Zbl 1068.14064
[58] A. Geramita, T. Harima, and Y. Shin, Extremal point sets and Gorenstein ideals , Adv. Math., 152 (2000), 78–119. · Zbl 0965.13011
[59] A. V. Geramita, P. Maroscia and L. Roberts, The Hilbert Function of a Reduced \(k\)-Algebra , J. London Math. Soc., 28 (1983), 443-452. · Zbl 0535.13012
[60] A. Geramita, J. Migliore, and L. Sabourin, On the first infinitesimal neighborhood of a linear configuration of points in \( \mathbf P^ 2\) , J. Algebra, 298 (2006), 563-611. · Zbl 1107.14048
[61] A. Geramita, and F. Orecchia, Minimally generating ideals defining certain tangent cones , J. Algebra, 78 (1982), 36-57. · Zbl 0502.14001
[62] D. Grayson and M. Stillman, MACAULAY 2 –\thinspacea system for computation in algebraic geometry and commutative algebra, (1997), available from http://www.math.uiuc.edu/Macaulay2/.
[63] M. Green, Generic initial ideals , Six lectures on commutative algebra, Birkhäuser, Progress in Mathematics 166 (1998), 119-185.
[64] G-M. Greuel, G. Pfister, and H. Schnemann, SINGULAR –\thinspacea system for computation in algebraic geometry and commutative algebra, (1997), available from http://www.singular.uni-kl.de/.
[65] L. Gruson, R. Lazarsfeld and C. Peskine, On a theorem of Castelnuovo, and the equations defining space curves , Inventiones mathematicae, 72 (1983), 491-506. · Zbl 0565.14014
[66] E. Guardo, A. Van Tuyl, The minimal resolutions of double points in \(\mathbf P^ 1\times\mathbf P^1\) with ACM support , J. Pure Appl. Algebra, 211 (2007), 784-800. \vfill · Zbl 1126.13013
[67] H. Ha, Multigraded regularity, \(a^*\)-,invariant and the minimal free resolution , J. Algebra, 310 (2007), 156–179. · Zbl 1142.13010
[68] B. Harbourne, Problems and progress: a survey on fat points in \(\mathbf P^ 2\). Zero-dimensional schemes and applications (Naples, 2000 ), Queen’s Papers in Pure and Appl. Math., Queen’s Univ., Kingston, ON, 123 (2002), 85–132. · Zbl 1052.14052
[69] R. Hartshorne, Connectedness of the Hilbert scheme , Publ. Math. IHES, 29 (1966), 5-48. · Zbl 0171.41502
[70] M. Hering, H. Schenck, and G. Smith, Syzygies, multigraded regularity and toric varieties , Compos. Math., 142 (2006), 1499-1506. · Zbl 1111.14052
[71] J. Herzog, Finite free resolutions , Computational commutative and non-commutative algebraic geometry, NATO Sci. Ser. III Comput. Syst. Sci., IOS, Amsterdam, 196 (2005), 118-144. · Zbl 1105.13012
[72] ——–, Generic initial ideals and graded Betti numbers , Computational commutative algebra and combinatorics (Osaka, 1999), Adv. Stud. Pure Math, Math. Soc. Japan, Tokyo, 33 (2002), 75-120. · Zbl 1034.13009
[73] J. Herzog, A. Jahan, and S. Yassemi, Stanley decompositions and partitionable simplicial complexes , J. Algebraic Combin., 27 (2008), 113-125. · Zbl 1131.13020
[74] T. Hibi and S. Murai, The behaviour of Betti numbers via algebraic shifting and combinatorial shifting , · Zbl 1163.13006
[75] T. Hibi, H. Nishida, and H. Ohsugi, Hilbert functions of squarefree Veronese subrings , Proceedings of the 4th Symposium on Algebra, Languages and Computation, (Osaka, 2000), Osaka Prefect. Univ., Sakai, (2001), 65-70. · Zbl 1096.13521
[76] D. Hilbert, Über the Theorie von algebraischen Formen , Math. Ann. 36 (1890), 473-534. An English translation is available in Hilbert’s Invariant Theory Papers, Math. Sci. Press, (1978). · JFM 22.0133.01
[77] ——–, Über die vollen Invariantensysteme , Math. Ann. 42 (1893), 313-373. An English translation is available in Hilbert’s Invariant Theory Papers, Math. Sci. Press, (1978). · JFM 25.0173.01
[78] F. Hirzebruch, Arrangements of lines and algebraic surfaces , Arithmetic and Geometry, vol. II, Progress in Math., 36 , Birkhäuser, Boston, (1983), pp. 113-140. · Zbl 0527.14033
[79] A. Jahan, Stanley decompositions of squarefree modules and Alexander duality , · Zbl 1183.13013
[80] M. Jöllenbeck, V. Welker, Resolution of the residue field via algebraic discrete Morse theory , Memoirs of the AMS, · Zbl 1160.13007
[81] G. Kaempf, and T. Römer, Homological properties of Orlik-Solomon algebras ,
[82] G. Katona, A theorem for finite sets, Theory of Graphs , (P. Erdös and G. Katona, eds.), Academic Press, New York (1968), 187-207. · Zbl 0313.05003
[83] J. Koh, Ideals generated by quadrics exhibiting double exponential degrees , J. Algebra 200 (1998), 225–245. · Zbl 0924.13022
[84] J. Kruskal, The number of simplices in a complex, Mathematical Optimization Techniques (R. Bellman, ed.) , University of California Press, Berkeley/Los Angeles (1963), 251–278. \vfill · Zbl 0116.35102
[85] R. Lazarsfeld, A sharp Castelnuovo bound for smooth surfaces , Duke Math. J. 55 (1987), 423-429. · Zbl 0646.14005
[86] F. Macaulay, Some properties of enumeration in the theory of modular systems , Proc. London Math. Soc. 26 (1927), 531-555. · JFM 53.0104.01
[87] D. Maclagan, and G. Smith, Multigraded Castelnuovo-Mumford regularity , J. Reine Angew. Math. 571 (2004), 179-212. · Zbl 1062.13004
[88] E. Mayr and A. Meyer, The complexity of the word problems for commutative semigroups and polynomial ideals , Adv. Math. 46 (1982), 305-329. · Zbl 0506.03007
[89] J. Mermin and S. Murai, The lex-plus-powers conjecture holds for pure powers , submitted. · Zbl 1213.13033
[90] J. Mermin and I. Peeva, Hilbert functions and lex ideals , J. Algebra, 313 (2007), 642-656. · Zbl 1194.13018
[91] J. Migliore, The geometry of Hilbert functions , Syzygies and Hilbert functions, I. Peeva editor, Lect. Notes Pure Appl. Math. 254 (2007), CRC Press. · Zbl 1145.13010
[92] J. Migliore, U. Nagel, Reduced arithmetically Gorenstein schemes and simplicial polytopes with maximal Betti numbers , Adv. Math. 180 (2003), 1-63. · Zbl 1053.13006
[93] U. Nagel and V. Reiner, Betti numbers of monomial ideals and shifted skew shapes , · Zbl 1186.13022
[94] P. Orlik and H. Terao, Arrangements of Hyperplanes , Springer-Verlag, (1992). · Zbl 0757.55001
[95] G. Ottaviani and R. Paoletti, Syzygies of Veronese embeddings , Compositio Math. 125 (2001), 31-37. · Zbl 0999.14016
[96] I. Peeva, Syzygies and Hilbert functions , Lect. Notes Pure Appl. Math. 254 (2007), CRC Press. · Zbl 1113.14004
[97] ——–, Hyperplane arrangements and linear strands in resolutions , Trans. Amer. Math. Soc. 355 (2003), 609-618. JSTOR: · Zbl 1084.52520
[98] I. Peeva, V. Reiner and V. Welker, Cohomology of real diagonal subspace arrangements via resolutions , Compositio Mathematica 117 (1999), 107-123. · Zbl 0954.13006
[99] I. Peeva and M. Stillman, Toric Hilbert schemes , Duke Math. J. 111 (2002), 419-449. · Zbl 1067.14005
[100] M. Ramras, Sequences of Betti numbers , J. Algebra 66 (1980), 193-204. · Zbl 0474.13007
[101] Z. Ran, Local differential geometry and generic projections of threefolds , J. Differential Geom. 32 (1990), 131–137. · Zbl 0788.14037
[102] V. Reiner and V. Welker, On the Charney-Davis and Neggers-Stanley conjectures , J. Combin. Theory Ser. A 109 (2005), 247-280. · Zbl 1065.06002
[103] B. Richert, Smallest graded Betti numbers , J. Algebra 244 (2001), 236-259. · Zbl 1027.13008
[104] L. Robiano, COCOA –\thinspacea system for computation in algebraic geometry and commutative algebra, (1997), available from http://cocoa.dima.unige.it/.
[105] J.-E. Roos, Commutative non Koszul algebras having a linear resolution of arbitrary high order. Applications to torsion in loop space homology , C. R. Acad. Sci. Paris Sér. I 316 (1993), 1123-1128. · Zbl 0785.13004
[106] H. Schenck, M. Stillman, High rank linear syzygies on low rank quadrics , · Zbl 1246.14066
[107] H. Schenck, A. Suciu, Resonance, linear syzygies, Chen groups, and the Bernstein-Gelfand-Gelfand correspondence , Trans. Amer. Math. Soc. 358 (2006), 2269–2289. · Zbl 1153.52008
[108] J. Sidman, A. Van Tuyl and H. Wang, Multigraded regularity: coarsenings and resolutions , J. Algebra 301 (2006), 703-727. · Zbl 1113.14034
[109] R. Stanley, Positivity problems and conjectures in algebraic combinatorics, in Mathematics: frontiers and perspectives , Amer. Math. Soc., Providence, RI, (2000), 295–319,. · Zbl 0955.05111
[110] ——–, Log-concave and unimodal sequences in algebra, combinatorics, and geometry , Graph theory and its applications: East and West (Jinan, 1986), Ann. New York Acad. Sci. 576 , New York Acad. Sci., New York, (1989), 500–535. · Zbl 0792.05008
[111] ——–, Combinatorics and commutative algebra , Progress in Mathematics 41 , Birkhuser Boston, Inc., Boston, MA, (1996). · Zbl 0838.13008
[112] A. Suciu, Fundamental groups of line arrangements: Enumerative aspects , Advances in algebraic geometry motivated by physics, Contemporary Math., 276 , (2001), Amer. Math. Soc., 43-79. · Zbl 0998.14012
[113] I. Swanson, On the embedded primes of the Mayr-Meyer ideals , J. Algebra 275 (2004), 143-190. · Zbl 1082.13015
[114] ——–, Multigraded Hilbert functions and mixed multiplicities, Syzygies and Hilbert functions , Lect. Notes Pure Appl. Math. 254 , Chapman & Hall/CRC, Boca Raton, FL, (2007), 267-280. · Zbl 1145.13012
[115] N. Terai, Alexander duality in Stanley-Reisner rings , Affine algebraic geometry, Osaka Univ. Press, Osaka, (2007), 449-462. · Zbl 1128.13014
[116] G. Valla, Hilbert functions of graded algebras , Six lectures on commutative algebra (Bellaterra, 1996), Progr. Math., 166, Birkhuser, Basel, (1998), 293-344. · Zbl 0946.13012
[117] V. Welker, Discrete Morse theory and free resolutions , Algebraic combinatorics, Universitext, Springer, Berlin, (2007), 81-172. · Zbl 1128.13007
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.