Kasprowski, Daniel; Winges, Christoph Shortening binary complexes and commutativity of \(K\)-theory with infinite products. (English) Zbl 07183274 Trans. Am. Math. Soc., Ser. B 7, 1-23 (2020). Summary: We show that in Grayson’s model of higher algebraic \(K\)-theory using binary acyclic complexes, the complexes of length two suffice to generate the whole group. Moreover, we prove that the comparison map from Nenashev’s model for \(K_1\) to Grayson’s model for \(K_1\) is an isomorphism. It follows that algebraic \(K\)-theory of exact categories commutes with infinite products. Cited in 1 ReviewCited in 2 Documents MSC: 19D06 \(Q\)- and plus-constructions 18E10 Abelian categories, Grothendieck categories Keywords:shortening; binary acyclic complexes; algebraic \(K\)-theory of infinite products PDF BibTeX XML Cite \textit{D. Kasprowski} and \textit{C. Winges}, Trans. Am. Math. Soc., Ser. B 7, 1--23 (2020; Zbl 07183274) Full Text: DOI arXiv OpenURL References: [1] Barwick, Clark, On the algebraic \(K\)-theory of higher categories, J. Topol., 9, 1, 245-347 (2016) · Zbl 1364.19001 [2] Blumberg, Andrew J.; Gepner, David; Tabuada, Gon\c{c}alo, A universal characterization of higher algebraic \(K\)-theory, Geom. Topol., 17, 2, 733-838 (2013) · Zbl 1267.19001 [3] Bartels, Arthur; Rosenthal, David, On the \(K\)-theory of groups with finite asymptotic dimension, J. Reine Angew. Math., 612, 35-57 (2007) · Zbl 1144.19001 [4] Carlsson, Gunnar, On the algebraic \(K\)-theory of infinite product categories, \(K\)-Theory, 9, 4, 305-322 (1995) · Zbl 0829.18005 [5] Carlsson, Gunnar; Pedersen, Erik Kj\ae r., Controlled algebra and the Novikov conjectures for \(K\)- and \(L\)-theory, Topology, 34, 3, 731-758 (1995) · Zbl 0838.55004 [6] Daniel R. Grayson, Relative algebraic \(K\)-theory by elementary means, arXiv:1310.8644. · Zbl 0362.18015 [7] Grayson, Daniel R., Algebraic \(K\)-theory via binary complexes, J. Amer. Math. Soc., 25, 4, 1149-1167 (2012) · Zbl 1276.19003 [8] Gabriel, P.; Zisman, M., Calculus of fractions and homotopy theory, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 35, x+168 pp. (1967), Springer-Verlag New York, Inc., New York · Zbl 0186.56802 [9] Thomas K. Harris, Binary complexes and algebraic \(K\)-theory, Ph.D. thesis, Southampton, 2015. [10] Heller, Alex, Some exact sequences in algebraic \(K\)-theory, Topology, 4, 389-408 (1965) · Zbl 0161.01507 [11] Kasprowski, Daniel, On the \(K\)-theory of groups with finite decomposition complexity, Proc. Lond. Math. Soc. (3), 110, 3, 565-592 (2015) · Zbl 1349.19001 [12] Daniel Kasprowski and Christoph Winges, Algebraic \(k\)-theory of stable \(\infty \)-categories via binary complexes, Journal of Topology 12 (2019), no. 2, 442-462. · Zbl 1436.19004 [13] Nenashev, A., \(K_1\) by generators and relations, J. Pure Appl. Algebra, 131, 2, 195-212 (1998) · Zbl 0923.19001 [14] Quillen, Daniel, Higher algebraic \(K\)-theory. I. Algebraic \(K\)-theory, I: Higher \(K\)-theories, Proc. Conf., Battelle Memorial Inst., Seattle, Wash., 1972, 85-147. Lecture Notes in Math., Vol. 341 (1973), Springer, Berlin [15] Ramras, Daniel A.; Tessera, Romain; Yu, Guoliang, Finite decomposition complexity and the integral Novikov conjecture for higher algebraic \(K\)-theory, J. Reine Angew. Math., 694, 129-178 (2014) · Zbl 1306.18005 [16] Schlichting, Marco, Delooping the \(K\)-theory of exact categories, Topology, 43, 5, 1089-1103 (2004) · Zbl 1059.18007 [17] Schlichting, Marco, Negative \(K\)-theory of derived categories, Math. Z., 253, 1, 97-134 (2006) · Zbl 1090.19002 [18] Thomason, R. W., The classification of triangulated subcategories, Compositio Math., 105, 1, 1-27 (1997) · Zbl 0873.18003 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.