×

Tangents to Chow groups: on a question of Green-Griffiths. (English) Zbl 1398.14010

From Summary and Introduction: “We examine the tangent groups at the identity, and more generally the formal completions at the identity, of the Chow groups of algebraic cycles on a nonsingular quasiprojective algebraic variety over a field of characteristic zero. We settle a question recently raised by M. Green and P. Griffiths [On the tangent space to the space of algebraic cycles on a smooth algebraic variety. Princeton, NJ: Princeton University Press (2005; Zbl 1076.14016)] concerning the existence of Bloch-Gersten-Quillen-type resolutions of algebraic \(K\)-theory sheaves on infinitesimal thickenings of nonsingular varieties, and the relationships between these sequences and their “tangent sequences,” expressed in terms of absolute Kähler differentials …In the present paper, we demonstrate that a satisfactory answer to this question requires reframing the entire picture in terms of Bass-Thomason nonconnective \(K\)-theory, the negative cyclic homology of C. Weibel [Proc. Am. Math. Soc. 124, No. 6, 1655–1662 (1996; Zbl 0855.19002)] and Keller, and the relative Chern character as treated by G. Cortiñas et al. [Ann. Math. (2) 167, No. 2, 549–573 (2008; Zbl 1191.19003); Math. Ann. 344, No. 4, 891–922 (2009; Zbl 1189.19002)].”
Recall that Green and Griffiths [loc. cit.] used Milnor \(K\)-groups instead of Quillen \(K\)-groups.
The approach of the authors is to develop what they call a coniveau machine for an infinitesimal thickening \(X_A\) of a nonsingular variety \(X\). It maps a Bloch-Gersten-Quillen type complex of sheaves on \(X\) in several stages to a similar complex on \(X\) involving cyclic homology on \(X_A\).
This requires a lot of machinery. There are many helpful discussions of relations with the literature.

MSC:

14C15 (Equivariant) Chow groups and rings; motives
19E15 Algebraic cycles and motivic cohomology (\(K\)-theoretic aspects)
14C25 Algebraic cycles
19D55 \(K\)-theory and homology; cyclic homology and cohomology
19L10 Riemann-Roch theorems, Chern characters
14B15 Local cohomology and algebraic geometry
55S25 \(K\)-theory operations and generalized cohomology operations in algebraic topology
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Angéniol, B., Lejeune-Jalabert, M.: Calcul différentiel et classes caractéristiques en géométrie algébrique. Travaux en Cours, 38. Hermann, Paris (1989) · Zbl 0749.14008
[2] Asakura, M.: Motives and algebraic de Rham cohomology. The arithmetic and geometry of algebraic cycles (Banff, AB, 1998), 133-154. CRM Proc. Lecture Notes, vol. 24. Amer. Math. Soc., Providence (2000)
[3] Balmer, P, Niveau spectral sequences on singular schemes and failure of generalized Gersten conjecture, Proc. Am. Math. Soc., 137, 99-106, (2009) · Zbl 1159.19002
[4] Bloch, S.: On the tangent space to Quillen \(K\)-theory. In: Bass H. (ed.) Higher \(K\)-Theories. Lecture Notes in Mathematics, vol. 341, pp. 205-210 (1972) · Zbl 0287.18016
[5] Bloch, S.: Algebraic \(K\)-theory and algebraic geometry, volume 341 of Lecture Notes in Mathematics, pp. 259-265 (1972) · Zbl 0289.14005
[6] Bloch, S, \(K_2\) and algebraic cycles, Ann. Math., 99, 349-379, (1974) · Zbl 0298.14005
[7] Bloch, S., Ogus, A.: Gersten’s conjecture and the homology of schemes. Ann. Sci. École Norm. Sup. (4) 7, 181-201 (1974) · Zbl 0307.14008
[8] Bloch, S., Esnault, H., Kerz, M.: Deformation of algebraic cycle classes in characteristic 0 (2014). arxiv:1310.1773 · Zbl 1322.14024
[9] Cathelineau, J.-L.: \(λ \)-structures in algebraic \(K\)-theory and cyclic homology. \(K\)-Theory 4, 591-606 (1991) · Zbl 0735.19005
[10] Colliot-Thélène, J.-L., Hoobler, R.T., Kahn, B.: The Bloch-Ogus-Gabber theorem. Algebraic K-theory (Toronto, ON, 1996), 31-94. Fields Inst. Commun., 16, Amer. Math. Soc., Providence, RI (1997) · Zbl 0911.14004
[11] Corti\(\tilde{\rm n}\)as, G., Haesemeyer, C., Schlichting, M., Weibel, C.: Cyclic homology, cdh-cohomology and negative \(K\)-theory. Ann. Math. (2) 167(2), 549-573 (2008) · Zbl 1191.19003
[12] Corti\(\tilde{\rm n}\)as, G., Haesemeyer, C., Weibel, C.: Infinitesimal cohomology and the Chern character to negative cyclic homology. Math. Ann. 344(4), 891-922 (2009) · Zbl 1189.19002
[13] Cortiñas, G., Weibel, C.: Relative Chern characters for nilpotent ideals. In: Algebraic Topology, Abel Symposia, vol. 4, pp. 61-82 (2009) · Zbl 1328.19006
[14] Dribus, B.F.: On the infinitesimal theory of Chow groups. Ph.D. dissertation, LSU (2014) · Zbl 1360.14023
[15] Gabber, O, Gersten’s conjecture for some complexes of vanishing cycles, Manuscr. Math., 85, 323-343, (1994) · Zbl 0827.19002
[16] Geller, S; Weibel, C, Hodge decompositions of loday symbols in K-theory and cyclic homology, K-theory, 8, 587-632, (1994) · Zbl 0824.19002
[17] Gersten, S.M.: Some exact sequences in the higher \(K\)-theory of rings, volume 341 of Lecture Notes in Mathematics, pp. 211-243 (1972) · Zbl 0289.18011
[18] Gillet, H., Soulé, C.: Intersection theory using Adams operations. Inventiones mathematicae 90, 243-277 (1987) (Springer-Verlag) · Zbl 0632.14009
[19] Gillet, H., Soulé, C.: Filtrations on higher K-theory. In: Algebraic K-theory volume 67 of Proc. Symp. Pure Math., pp. 89-148. AMS (1999) · Zbl 0951.19003
[20] Goodwillie, T.G.: Relative algebraic K-theory and cyclic homology. Ann. Math. (2) 124(2), 347-402 (1986) · Zbl 0627.18004
[21] Grayson, D, Exterior power operations on algebraic K-theory, K-theory, 3, 247-260, (1989) · Zbl 0701.18007
[22] Grayson, D, Adams operations on higher K-theory, K-theory, 6, 97-111, (1992) · Zbl 0776.19001
[23] Green, M., Griffiths, P.: On the tangent space to the space of algebraic cycles on a smooth algebraic variety. In: Griffiths, P.A., Mather, J.N., Stein, E.M. (eds.) Annals of Mathematics Studies, vol. 157, Princeton University Press (2005) · Zbl 1076.14016
[24] Green, M., Griffiths, P.: Hodge-theoretic invariants for algebraic cycles. Int. Math. Res. Not. (9), 477-510 (2003) · Zbl 1049.14002
[25] Grothendieck, A., Raynaud, M., Laszlo, Y. (eds.): Cohomologie locale des faisceaux cohérents et théorèmes de Lefschetz locaux et globaux (SGA 2). Documents Mathématiques, 4, Paris: Société Mathématique de France. arXiv:math/0511279
[26] Grothendieck, A., et al.: Théorie des Intersections et Théorème de Riemann-Roch, Seminaire de Geometrie Algebrique du Bois Marie 6 (republished as Lecture Notes in Mathematics, vol. 225 (1971))
[27] Hartshorne, R.: Residues and duality. Volume 20 in Lecture Notes in Mathematics. Springer (1966) · Zbl 0212.26101
[28] Hesselholt, L.: \(K\)-theory of truncated polynomial algebras. In: Friedlander, E.M., Grayson, D.R. (eds.) Handbook of K-theory, vol. 1, 2, pp. 71-110. Springer, Berlin (2005) · Zbl 1102.19002
[29] Jannsen, U.: Motivic sheaves and filtrations on Chow groups. In: Motives (Seattle, WA, 1991), 245-302. Proc. Sympos. Pure Math., vol. 55, Part 1. Amer. Math. Soc., Providence (1994) · Zbl 0811.14004
[30] Keller, B.: Invariance and localization for cyclic homology of DG algebras, 1996. J. Pure Appl. Algebra 123(1-3), 223-273 (1998) · Zbl 0890.18007
[31] Keller, B.: On the cyclic homology of exact categories, 1996. (Preprint)
[32] Keller, B, On the cyclic homology of ringed spaces and schemes, Doc. Math., 3, 231-259, (1998) · Zbl 0917.19002
[33] Kerz, M.: Milnor K-theory of local rings. Thesis, Universität Regensburg (2008)
[34] Levine, M.: Lambda-operations, \(K\)-theory and motivic cohomology. Algebraic K-theory (Toronto, ON, 1996), pp. 131-184. Fields Inst. Commun., vol. 16. Amer. Math. Soc., Providence, RI (1997) · Zbl 0883.19001
[35] Loday, J-L, Opérations sur l’homologie cyclique des algèbres commutatives, Invent. Math., 96, 205-230, (1989) · Zbl 0686.18006
[36] Loday, J.L.: Cyclic homology. Grundlehren der mathematischen Wissenschaften, vol. 301, 2nd edn. Springer (1998). Appendix E by María O. Ronco. chapter 13 by the author in collaboration with Teimuraz Pirashvili · Zbl 0824.19002
[37] Maazen, H; Stienstra, J, A presentation of \(K_2\) of split radical pairs, J. Pure Appl. Algebra, 10, 271-294, (1977) · Zbl 0393.18013
[38] Patel, D; Ravindra, GV, Weak Lefschetz for Chow groups: infinitesimal lifting, Homol. Homotopy Appl., 16, 65-84, (2014) · Zbl 1360.14023
[39] Quillen, D.: Higher algebraic \(K\)-theory I. Lecture Notes in Mathematics, vol. 341, pp. 85-147 (1972) · Zbl 0292.18004
[40] Schlichting, M.: Higher algebraic K-theory. In: Topics in Algebraic and Topological K-theory, pp. 167-241. Lecture Notes in Math., 2008. Springer, Berlin (2011) · Zbl 1216.19003
[41] Soulé, C, Opérations en K-théorie algébrique, Can. J. Math., 37, 488-550, (1985) · Zbl 0575.14015
[42] Stienstra, J, On the formal completion of the Chow group \(CH^2(X)\) for a smooth projective surface in characteristic 0, Nederl. Akad. Wetensch. Indag. Math., 45, 361-382, (1983) · Zbl 0523.14008
[43] Stienstra, J.: Cartier-Dieudonné theory for Chow groups. J. Reine Angew. Math. 355, 1-66 (1985) (correction. J. Reine Angew. Math. 362, 218-220 (1985)) · Zbl 0545.14013
[44] Thomason, R.W.: Algebraic K-theory and étale cohomology. Ann. Sci. École Norm. Sup. (4) 18(3), 437-552 (1985) · Zbl 0596.14012
[45] Thomason, R.W., Trobaugh, T.: Higher algebraic K-theory of schemes and of derived categories. The Grothendieck Festschrift, vol. III, pp. 247-435. Progr. Math., vol. 88. Birkhuser Boston, Boston, MA (1990)
[46] Kallen, W, Le \(K_2\) des nombres duaux, Comptes Rendus de l’Académie des Sciences Paris, Série A, 273, 1204-1207, (1971) · Zbl 0225.13006
[47] Weibel, C, Pic is a contracted functor, Invent. Math., 103, 351-377, (1991) · Zbl 0794.13008
[48] Weibel, C, Cyclic homology for schemes, Proc. Am. Math. Soc., 124, 1655-1662, (1996) · Zbl 0855.19002
[49] Weibel, C.: The \(K\)-Book: An Introduction to Algebraic \(K\)-Theory. Graduate Studies in Mathematics, vol. 145. American Mathematical Society, Providence (2013) · Zbl 1159.19002
[50] Yang, S.: Higher algebraic K-theory and tangent spaces to Chow groups. Thesis, Louisiana State University (2012)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.