×

Eigenpairs of Toeplitz and disordered Toeplitz matrices with a Fisher-Hartwig symbol. (English) Zbl 1375.82025

Summary: Toeplitz matrices have entries that are constant along diagonals. They model directed transport, are at the heart of correlation function calculations of the two-dimensional Ising model, and have applications in quantum information science. We derive their eigenvalues and eigenvectors when the symbol is singular Fisher-Hartwig. We then add diagonal disorder and study the resulting eigenpairs. We find that there is a “bulk” behavior that is well captured by second order perturbation theory of non-Hermitian matrices. The non-perturbative behavior is classified into two classes: Runaways type I leave the complex-valued spectrum and become completely real because of eigenvalue attraction. Runaways type II leave the bulk and move very rapidly in response to perturbations. These have high condition numbers and can be predicted. Localization of the eigenvectors are then quantified using entropies and inverse participation ratios. Eigenvectors corresponding to Runaways type II are most localized (i.e., super-exponential), whereas Runaways type I are less localized than the unperturbed counterparts and have most of their probability mass in the interior with algebraic decays. The results are corroborated by applying free probability theory and various other supporting numerical studies.

MSC:

82B20 Lattice systems (Ising, dimer, Potts, etc.) and systems on graphs arising in equilibrium statistical mechanics
82B44 Disordered systems (random Ising models, random Schrödinger operators, etc.) in equilibrium statistical mechanics
15B05 Toeplitz, Cauchy, and related matrices
15A18 Eigenvalues, singular values, and eigenvectors
65F35 Numerical computation of matrix norms, conditioning, scaling
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Trefethen, L.N., Embree, M.: Spectra and Pseudospectra. Princeton University Press, Princeton (2015) · Zbl 1085.15009
[2] Nelson, D.R.: Biophysical dynamics in disorderly environments. Annu. Rev. Biophys. 41, 371-402 (2012) · doi:10.1146/annurev-biophys-042910-155236
[3] Lin, Z., Ramezani, H., Eichelkraut, T., Kottos, T., Cao, H., Christodoulides, D.N.: Unidirectional invisibility induced by PT-symmetric periodic structures. Phys. Rev. Lett. 106, 213901 (2011) · doi:10.1103/PhysRevLett.106.213901
[4] Fisher, M., Hartwig, R.E.: Toeplitz determinants: some applications, theorems and conjectures. Adv. Chem. Phys. 15, 333-353 (1968)
[5] Jin, B.-Q., Korepin, V.E.: Quantum spin chain, Toeplitz determinants and Fisher-Hartwig Conjecture. J. Stat. Phys. 116, 79-95 (2004) · Zbl 1142.82314 · doi:10.1023/B:JOSS.0000037230.37166.42
[6] McCoy, B.M., Wu, T.T.: The Two Dimensional Ising Model. Harvard University Press, Cambridge (1973) · Zbl 1094.82500 · doi:10.4159/harvard.9780674180758
[7] Gray, R.M.: Toeplitz and Circulant Matrices: A Review. Now Publication, Boston (2006) · Zbl 1115.15021
[8] Ivanov, D.A., Abanov, A.G.: Fisher-Hartwig expansion for Toeplitz determinants and the spectrum of a single-particle reduced density matrix for one-dimensional free fermions. J. Phys. A 46, 375005 (2013) · Zbl 1283.81078 · doi:10.1088/1751-8113/46/37/375005
[9] Keating, J., Mezzadri, F.: Random matrix theory and entanglement in quantum spin chains. Commun. Math. Phys. 252, 543-579 (2004) · Zbl 1124.82009 · doi:10.1007/s00220-004-1188-2
[10] Kadanoff, P.: Spin-spin correlation in the two dimensional Ising model. Nuovo Cim. B 44, 273-305 (1966) · doi:10.1007/BF02710808
[11] Montroll, E., Potts, R., Ward, J.: Correlations and spontaneous magnetization of the two-dimensional Ising model. J. Math. Phys. 4, 308-322 (1963) · doi:10.1063/1.1703955
[12] Hatano, N., Nelson, D.R.: Vortex pinning and non-Hermitian quantum mechanics. Phys. Rev. B 56, 8651 (1997) · Zbl 0949.37060 · doi:10.1103/PhysRevB.56.8651
[13] Feinberg, J., Zee, A.: Non-Hermitian localization and delocalization. Phys. Rev. E 59, 6433 (1999) · Zbl 0944.82017 · doi:10.1103/PhysRevE.59.6433
[14] Br’ezin, E., Zee, A.: Non-Hermitian delocalization: multiple scattering and bounds. Nucl. Phys. B 509, 599-614 (1998) · Zbl 0953.82026 · doi:10.1016/S0550-3213(97)00652-4
[15] Brouwer, P., Silvestrov, P., Beenakker, C.: Theory of directed localization in one dimension. Phys. Rev. B 56, 55-57 (1997) · doi:10.1103/PhysRevB.56.R4333
[16] Connes, A.: Non-commutative differential geometry, parts I and II. IH’ES. Publ. Math. 62, 257 (1985) · Zbl 0564.58002
[17] Douglas, R., Hurder, S., Kaminker, J.: The longitudinal cocycle and the index of Toeplitz operators. J. Funct. Anal. 101, 120-144 (1991) · Zbl 0760.47009 · doi:10.1016/0022-1236(91)90151-T
[18] Boettcher, A., Grudsky, S.: Spectral Properties of Banded Toeplitz Matrices. SIAM, Philadelphia (2005) · Zbl 1089.47001 · doi:10.1137/1.9780898717853
[19] Boettcher, A., Embree, M., Sokolov, V.I.: The spectra of large Toeplitz band matrices with a randomly perturbed entry. Math. Comput. 72, 1329-1348 (2003) · Zbl 1022.47019 · doi:10.1090/S0025-5718-03-01505-9
[20] Szegö, G.: Ein grenzwertsatz über die Toeplitzschen determinanten einer reellen positiven funktion. Math. Ann. 76, 490-503 (1915) · JFM 45.0518.02 · doi:10.1007/BF01458220
[21] Forrester, P., Frankel, N.: Applications and generalizations of Fisher-Hartwig asymptotics. J. Math. Phys. 45, 2003-2028 (2004) · Zbl 1071.82014 · doi:10.1063/1.1699484
[22] Widom, H.: Toeplitz determinants with singular generating functions. Am. J. Math. 94, 333-383 (1973) · Zbl 0275.45006 · doi:10.2307/2373789
[23] Widom, H.: Eigenvalue distribution for non-selfadjoint Toeplitz matrices. Oper. Theory 71, 1-8 (1994) · Zbl 0809.15004
[24] Deift, P., Its, A., Krasovsky, I.: Toeplitz matrices and Toeplitz determinants under the impetus of the Ising model: some history and some recent results. Commun. Pure Appl. Math. 66, 1360-1438 (2013) · Zbl 1292.47016 · doi:10.1002/cpa.21467
[25] Basor, E.L., Tracy, C.A.: The Fisher-Hartwig conjecture and generalizations. Phys. A 177, 167-173 (1991) · doi:10.1016/0378-4371(91)90149-7
[26] Widom, H.: On the spectrum of a Toeplitz operator. Pac. J. Math. 14, 365-375 (1964) · Zbl 0197.10902 · doi:10.2140/pjm.1964.14.365
[27] Boettcher, A., Silbermann, B.: Introduction to Large Truncated Toeplitz Matrices. Springer, Berlin (1999) · Zbl 0916.15012 · doi:10.1007/978-1-4612-1426-7
[28] Ehrhardt, T., Silbermann, B.: Toeplitz determinant with one Fisher-Hartwig singularity. J. Funct. Anal. 148, 229-256 (1997) · Zbl 0909.47019 · doi:10.1006/jfan.1996.3074
[29] Eisert, J., Cramer, M., Plenio, M.: Area laws for the entanglement entropy. Rev. Modern Phys. 82, 277-306 (2010) · Zbl 1205.81035 · doi:10.1103/RevModPhys.82.277
[30] Its, A.R., Jin, B.-Q., Korepin, V.E.: Entanglement in the XY spin chain. J. Phys. A 38, 2975 (2005) · Zbl 1112.82013 · doi:10.1088/0305-4470/38/13/011
[31] Ashcroft, N., Mermin, N.D.: Solid State Physics. Cengage Learning, London (1976) · Zbl 1107.82300
[32] Anderson, P.W.: Absence of diffusion in certain random lattices. Phys. Rev. 109, 1492-1505 (1958) · doi:10.1103/PhysRev.109.1492
[33] Kac, M.: On certain Toeplitz-like matrices and their relation to the problem of lattice vibrations. Arkiv for Det Fysiske Seminar I, Trondheim 11, 1-22 (1968)
[34] Dai, H., Geary, Z., Kadanoff, L.P.: Asymptotics of eigenvalues and eigenvectors of Toeplitz matrices. J. Stat. Mech. 2009, 05012 (2009). doi:10.1088/1742-5468/2009/05/P05012 · Zbl 1456.15005 · doi:10.1088/1742-5468/2009/05/P05012
[35] Kadanoff, L.P.: Expansions for eigenfunction and eigenvalues of large-n Toeplitz matrices. Papers Phys. 2 (2010). arXiv:0906.0760 [math-ph]
[36] Lee, S., Dai, H., Bettelheim, E.: Asymptotic eigenvalue distribution of large Toeplitz matrices. (2007). arXiv:0708.3124 [math-ph] · JFM 45.0518.02
[37] Barnes, E.: The theory of the G-function. Q. J. Pure Appl. Math. 31, 264-314 (1900) · JFM 30.0389.02
[38] Stewart, G., Sun, J.-G.: Matrix Perturbation Theory, 1st edn. Academic Press, New York (1990) · Zbl 0706.65013
[39] Movassagh, R.: Eigenvalue attraction. J. Stat. Phys. 162(3), 615-643 (2016). doi:10.1007/s10955-015-1424-5 · Zbl 1356.15016
[40] Trefethen, L.N., Contedini, M., Embree, M.: Spectra, pseudospectra, and localization for random bidiagonal matrices. Commun. Pure Appl. Math. 54, 594-623 (2001) · Zbl 1025.15034 · doi:10.1002/cpa.4
[41] Nica, A., Speicher, R.: Lectures on the Combinatorics of Free Probability. Cambridge University Press, Cambridge (2006) · Zbl 1133.60003 · doi:10.1017/CBO9780511735127
[42] Movassagh, R., Edelman, A.: Isotropic entanglement. (2010). arXiv:1012.5039 [quant-ph]
[43] Chen, J., Hontz, E., Moix, J., Welborn, M., Voorhis, T.V., Su’arez, A., Movassagh, R., Edelman, A.: Error analysis of free probability approximations to the density of states of disordered systems. Phys. Rev. Lett. 109, 036403 (2012) · doi:10.1103/PhysRevLett.109.036403
[44] Movassagh, R., Edelman, A.: Density of states of quantum spin systems from isotropic entanglement. Phys. Rev. Lett. 107, 097205 (2010) · doi:10.1103/PhysRevLett.107.097205
[45] Mott, N.F.: Conduction in non-crystalline materials: III. Localized states in a pseudogap and near extremities of conduction and valence bands. Philos. Mag. 160(19), 835-852 (1969) · doi:10.1080/14786436908216338
[46] Cover, T.M., Thomas, J.A.: Elements of Information Theory. Wiley-Interscience, New York (1991) · Zbl 0762.94001 · doi:10.1002/0471200611
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.