×

On constructions with 2-cardinals. (English) Zbl 1417.03249

Summary: We propose developing the theory of consequences of morasses relevant in mathematical applications in the language alternative to the usual one, replacing commonly used structures by families of sets originating with Velleman’s neat simplified morasses called 2-cardinals. The theory of related trees, gaps, colorings of pairs and forcing notions is reformulated and sketched from a unifying point of view with the focus on the applicability to constructions of mathematical structures like Boolean algebras, Banach spaces or compact spaces. The paper is dedicated to the memory of Jim Baumgartner whose seminal joint paper [J. E. Baumgartner and S. Shelah, Ann. Pure Appl. Logic 33, 109–129 (1987; Zbl 0643.03038)] with Saharon Shelah provided a critical mass in the theory in question. A new result which we obtain as a side product is the consistency of the existence of a function \(f:[\lambda ^{++}]^2\rightarrow [\lambda ^{++}]^{\leq \lambda }\) with the appropriate \(\lambda ^+\)-version of property \(\Delta \) for regular \(\lambda \geq \omega \) satisfying \(\lambda ^{<\lambda }=\lambda \).

MSC:

03E05 Other combinatorial set theory
03E35 Consistency and independence results
03E75 Applications of set theory

Citations:

Zbl 0643.03038
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Argyros, S., Lopez-Abad, J., Todorcevic, S.: A class of Banach spaces with few non-strictly singular operators. J. Funct. Anal. 222(2), 306-384 (2005) · Zbl 1086.46005 · doi:10.1016/j.jfa.2004.11.001
[2] Aviles, A., Todorcevic, S.: Zero subspaces of polynomials on \[{\ell }_1(\Gamma )\] ℓ1(Γ). J. Math. Anal. Appl. 350(2), 427-435 (2009) · Zbl 1391.46056 · doi:10.1016/j.jmaa.2007.08.020
[3] Baumgartner, J.: Almost-disjoint sets, the dense set problem and the partition calculus. Ann. Math. Log. 9(4), 401-439 (1976) · Zbl 0339.04003 · doi:10.1016/0003-4843(76)90018-8
[4] Baumgartner, J.: Applications of the proper forcing axiom. In: Kunen, K., Vaughan, J.E. (eds.) Handbook of Set-Theoretic Topology, pp. 913-959. North-Holland, Amsterdam (1984) · Zbl 0523.03039
[5] Baumgartner, J., Shelah, S.: Remarks on superatomic Boolean algebras. Ann. Pure Appl. Log. 33(2), 109-129 (1987) · Zbl 0643.03038 · doi:10.1016/0168-0072(87)90077-7
[6] Baumgartner, J., Spinas, O.: Independence and consistency proofs in quadratic form theory. J. Symb. Log. 56(4), 1195-1211 (1991) · Zbl 0745.03040 · doi:10.2307/2275468
[7] Brech, C., Koszmider, P.: Thin-very tall compact scattered spaces which are hereditarily separable. Trans. Am. Math. Soc. 363(1), 501-519 (2011) · Zbl 1253.54030 · doi:10.1090/S0002-9947-2010-05149-9
[8] Comfort, W.W., Negrepontis, S.: The Theory of Ultrafilters. Die Grundlehren der mathematischen Wissenschaften, Band 211. Springer, New York (1974) · Zbl 0298.02004
[9] Devlin, K.: Order types, trees, and a problem of Erdos and Hajnal. Period. Math. Hung. 5, 153-160 (1974) · Zbl 0292.02055 · doi:10.1007/BF02020549
[10] Devlin, K.: Aspects of Constructibility. Lecture Notes in Mathematics, vol. 354. Springer (1973) · Zbl 0312.02054
[11] Dow, A.: An introduction to applications of elementary submodels to topology. Topol. Proc. 13(1), 17-72 (1988) · Zbl 0696.03024
[12] Eda, K., Gruenhage, G., Koszmider, P., Tamano, K., Todorcevic, S.: Sequential fans in topology. Topol. Appl. 67(3), 189-220 (1995) · Zbl 0868.54001 · doi:10.1016/0166-8641(95)00016-X
[13] Gorelic, I.: The Baire category and forcing large Lindelof spaces with points \[{G_{\delta }}\] Gδ. Proc. Am. Math. Soc. 118(2), 603-607 (1993) · Zbl 0783.03028
[14] Hajnal, A., Juhasz, I.: On spaces in which every small subspace is metrizable. Bull. Pol. Acad. Sci. Ser. Mat. Astron. Phys. 24, 727-731 (1976) · Zbl 0345.54003
[15] Hajnal, A., Juhasz, I.: A consistency result concerning heredetarily \[{\alpha }\] α-Lindelof spaces. Acta Math. Acad. Sci. Hung. 24, 307-312 (1973) · Zbl 0277.02018 · doi:10.1007/BF01958041
[16] Irrgang, B.: Morasses and finite support iterations. Proc. Am. Math. Soc. 137(3), 1103-1113 (2009) · Zbl 1161.03027 · doi:10.1090/S0002-9939-08-09525-7
[17] Irrgang, B.: Forcings constructed along morasses. J. Symb. Log. 76(4), 1097-1125 (2011) · Zbl 1250.03096 · doi:10.2178/jsl/1318338841
[18] Jech, T.: Set Theory. The Third Millennium Edition, Revised and Expanded. Springer Monographs in Mathematics. Springer, Berlin (2003) · Zbl 1245.03074
[19] Jensen, R., Schlechta, K.: Results on the generic Kurepa hypothesis. Arch. Math. Log. 30, 13-27 (1990) · Zbl 0703.03033 · doi:10.1007/BF01793783
[20] Juhasz, I., Koszmider, P., Soukup, L.: A first countable, initially \[{\omega }_1\] ω1-compact but non-compact space. Topol. Appl. 156(10), 1863-1879 (2009) · Zbl 1168.54003 · doi:10.1016/j.topol.2009.04.004
[21] Koepke, P., Martinez, J.: Superatomic Boolean algebras constructed from morasses. J. Symb. Log. 60(3), 940-951 (1995) · Zbl 0854.06018 · doi:10.2307/2275766
[22] Komjath, P.: Morasses and the Levy collapse. J. Symb. Log. 52(1), 111-115 (1987) · Zbl 0637.03046 · doi:10.2307/2273865
[23] Koszmider, P.: Semimorasses and nonreflection at singular cardinals. Ann. Pure Appl. Log. 72(1), 1-23 (1995). Appl. Logic · Zbl 0843.03025 · doi:10.1016/0168-0072(93)E0068-Y
[24] Koszmider, P.: On strong chains of uncountable functions. Isr. J. Math. 118, 289-315 (2000) · Zbl 0961.03039 · doi:10.1007/BF02803525
[25] Koszmider, P.: Universal matrices and strongly unbounded functions. Math. Res. Lett. 9(4), 549-566 (2002) · Zbl 1016.03047 · doi:10.4310/MRL.2002.v9.n4.a15
[26] Koszmider, P.: A space \[C(K)C(K)\] where all nontrivial complemented subspaces have big densities. Stud. Math. 168(2), 109-127 (2005) · Zbl 1068.03042 · doi:10.4064/sm168-2-2
[27] Koszmider, P.: Kurepa trees and topological non-reflection. Topol. Appl. 151(1-3), 77-98 (2005) · Zbl 1076.54003 · doi:10.1016/j.topol.2003.08.033
[28] Koszmider, P.: On large indecomposable Banach spaces. J. Funct. Anal. 264(8), 1779-1805 (2013) · Zbl 1273.46009 · doi:10.1016/j.jfa.2013.01.015
[29] Kunen, K.: Set Theory. An Introduction to Independence Proofs. Studies in Logic and the Foundations of Mathematics, vol. 102. North Holland, Amsterdam (1980) · Zbl 0443.03021
[30] Martinez, J.: Some open questions for superatomic Boolean algebras. Notre Dame J. Form. Log. 46(3), 353-356 (2005) · Zbl 1095.03037 · doi:10.1305/ndjfl/1125409333
[31] Martinez, J., Soukup, L.: Superatomic Boolean algebras constructed from strongly unbounded functions. MLQ Math. Log. Q. 57(5), 456-469 (2011) · Zbl 1245.03074 · doi:10.1002/malq.201010014
[32] Morgan, C.: Morasses, square and forcing axioms. Ann. Pure Appl. Log. 80(2), 139-163 (1996) · Zbl 0869.03026 · doi:10.1016/0168-0072(95)00060-7
[33] Morgan, C.: Higher gap morasses. IA. Gap-two morasses and condensation. J. Symb. Log. 63(3), 753-787 (1998) · Zbl 0924.03092
[34] Morgan, C.: Local connectedness and distance functions. In: Bagaria, J., Todorcevic, S. (eds.) Set Theory. Trends in Mathematics, pp. 345-400. Birkhauser, Basel (2006) · Zbl 1113.03042
[35] Neeman, I.: Forcing with sequences of models of two types. Notre Dame J. Form. Log. 55(2), 265-298 (2014) · Zbl 1352.03054
[36] Rabus, M.: An \[{\omega }_2\] ω2-minimal Boolean algebra. Trans. Am. Math. Soc. 348(8), 3235-3244 (1996) · Zbl 0859.03026 · doi:10.1090/S0002-9947-96-01663-7
[37] Roitman, J.: Superatomic Boolean algebras. In: Handbook of Boolean Algebras, vol. 3, pp. 719-740. North-Holland, Amsterdam (1989) · Zbl 0868.54001
[38] Shelah, S.: On some problems in topology (preprint) · Zbl 0847.54004
[39] Shelah, S., Stanley, L.: \[SS\]-forcing. I. A “black-box” theorem for morasses, with applications to super-Souslin trees. Isr. J. Math. 43(3), 185-224 (1982) · Zbl 0513.03023
[40] Shelah, S., Steprans, J.: Extraspecial p-groups. Ann. Pure Appl. Log. 34(1), 87-97 (1987) · Zbl 0667.04002 · doi:10.1016/0168-0072(87)90041-8
[41] Shelah, S.: On long increasing chains modulo flat ideals. MLQ Math. Log. Q. 56(4), 397-399 (2010) · Zbl 1200.03031 · doi:10.1002/malq.200910010
[42] Szalkai, I.: An inductive definition of higher gap simplified morasses. Publ. Math. Debr. 58(4), 605-634 (2001) · Zbl 0991.03047
[43] Todorcevic, S.: Directed sets and cofinal types. Trans. Am. Math. Soc. 290(2), 711-723 (1985) · Zbl 0592.03037 · doi:10.2307/2000309
[44] Todorcevic, S.: Partitioning pairs of countable ordinals. Acta Math. 159, 261-294 (1987) · Zbl 0658.03028 · doi:10.1007/BF02392561
[45] Todorcevic, S.: Conjectures of Rado and Chang and cardinal arithmetic. In: Finite and Infinite Combinatorics in Sets and Logic (Banff, AB, 1991), pp. 385-398, NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., 411, Kluwer Acad. Publ., Dordrecht (1993) · Zbl 0844.03027
[46] Todorcevic, S.: Remarks on Martin’s axiom and continuum hypothesis. Can. J. Math. 43, 832-851 (1991) · Zbl 0776.03024 · doi:10.4153/CJM-1991-048-8
[47] Todorcevic, S.: Irredundant sets in Boolean algebras. Trans. Am. Math. Soc. 339(1), 35-44 (1993) · Zbl 0781.06010 · doi:10.1090/S0002-9947-1993-1080736-3
[48] Todorcevic, S.: Walks on Ordinals and Their Characteristics. Progress in Mathematics, vol. 263. Birkhauser, Basel (2007) · Zbl 1148.03004
[49] Todorcevic, S.: Coherent sequences. In: Foreman, M., Kanamori, A. (eds.) Handbook of Set Theory, vol. 1-3, pp. 215-296. Springer, Dordrecht (2010) · Zbl 1198.03052
[50] Velickovic, B.: Forcing axioms and stationary sets. Adv. Math. 94(2), 256 (1992) · Zbl 0785.03031 · doi:10.1016/0001-8708(92)90038-M
[51] Velickovic, B., Venturi, G.: Proper forcing remastered. In: Cummings, J., Schimmerling, E. (eds.) Appalachian Set Theory 2006-2012. London Mathematical Society Lecture Notes Series, vol. 406, pp. 331-362. Cambridge University Press, Cambridge, UK (2013) · Zbl 1367.03094
[52] Velleman, D.: Morasses, diamond and forcing. AML 23, 199-281 (1983) · Zbl 0521.03034
[53] Velleman, D.: Simplified morasses. JSL 49(1), 257-271 (1984) · Zbl 0575.03035
[54] Velleman, D.: \[{\omega }\] ω-morasses, and a weak form of Martin’s axiom provable in ZFC. Trans. Am. Math. Soc. 285(2), 617-627 (1984) · Zbl 0523.03039
[55] Velleman, D.: Simplified gap-2 morasses. Ann. Pure Appl. Log. 34(2), 171-208 (1987) · Zbl 0626.03040 · doi:10.1016/0168-0072(87)90070-4
[56] Zwicker, W., William \[S.: {P_{\kappa }}{\lambda }\] Pκλ combinatorics. I. Stationary coding sets rationalize the club filter. Axiomatic set theory (Boulder, Colo., 1983), pp. 243-259, Contemp. Math., 31, Amer. Math. Soc., Providence (1984) · Zbl 0536.03030
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.