×

A simple non-chaotic map generating subdiffusive, diffusive, and superdiffusive dynamics. (English) Zbl 1374.37063

Summary: Analytically tractable dynamical systems exhibiting a whole range of normal and anomalous deterministic diffusion are rare. Here, we introduce a simple non-chaotic model in terms of an interval exchange transformation suitably lifted onto the whole real line which preserves distances except at a countable set of points. This property, which leads to vanishing Lyapunov exponents, is designed to mimic diffusion in non-chaotic polygonal billiards that give rise to normal and anomalous diffusion in a fully deterministic setting. As these billiards are typically too complicated to be analyzed from first principles, simplified models are needed to identify the minimal ingredients generating the different transport regimes. For our model, which we call the slicer map, we calculate all its moments in position analytically under variation of a single control parameter. We show that the slicer map exhibits a transition from subdiffusion over normal diffusion to superdiffusion under parameter variation. Our results may help to understand the delicate parameter dependence of the type of diffusion generated by polygonal billiards. We argue that in different parameter regions the transport properties of our simple model match to different classes of known stochastic processes. This may shed light on difficulties to match diffusion in polygonal billiards to a single anomalous stochastic process.{
©2015 American Institute of Physics}

MSC:

37E05 Dynamical systems involving maps of the interval
PDFBibTeX XMLCite
Full Text: DOI arXiv Link

References:

[1] Dorfman, J. R., An Introduction to Chaos in Nonequilibrium Statistical Mechanics (1999) · Zbl 0973.82001
[2] Gaspard, P., Chaos, Scattering, and Statistical Mechanics (1998) · Zbl 0915.00011
[3] Klages, R., Microscopic Chaos, Fractals and Transport in Nonequilibrium Statistical Mechanics (2007) · Zbl 1127.82002
[4] Rondoni, L.; Mejia-Monasterio, C., Nonlinearity, 20, R1 (2007) · Zbl 1128.82016 · doi:10.1088/0951-7715/20/10/R01
[5] Castiglione, P.; Falcioni, M.; Lesne, A.; Vulpiani, A., Chaos and Coarse Graining in Statistical Mechanics (2008) · Zbl 1189.82001
[6] Marini Bettolo Marconi, U.; Puglisi, A.; Rondoni, L.; Vulpiani, A., Phys. Rep., 461, 111 (2008) · doi:10.1016/j.physrep.2008.02.002
[7] Jepps, O. G.; Rondoni, L., J. Phys. A, 43, 133001 (2010) · Zbl 1195.82048 · doi:10.1088/1751-8113/43/13/133001
[8] Zaslavsky, G. M., Phys. Rep., 371, 461 (2002) · Zbl 0999.82053 · doi:10.1016/S0370-1573(02)00331-9
[9] Klages, R.; Radons, G.; Sokolov, I. M., Anomalous Transport: Foundations and Applications (2008)
[10] Jepps, O. G.; Bathia, S. K.; Searles, D. J., Phys. Rev. Lett., 91, 126102 (2003) · doi:10.1103/PhysRevLett.91.126102
[11] Igarashi, A.; Rondoni, L.; Botrugno, A.; Pizzi, M., Commun. Theor. Phys., 56, 352 (2011) · Zbl 1247.76080 · doi:10.1088/0253-6102/56/2/28
[12] Jepps, O. G.; Rondoni, L., J. Phys. A: Math. Gen., 39, 1311 (2006) · Zbl 1088.82025 · doi:10.1088/0305-4470/39/6/007
[13] Jepps, O. G.; Bianca, C.; Rondoni, L., Chaos, 18, 013127 (2008) · doi:10.1063/1.2888759
[14] Sokolov, I. M., Soft Matter, 8, 9043 (2012) · doi:10.1039/c2sm25701g
[15] Metzler, R.; Klafter, J., Phys. Rep., 339, 1 (2000) · Zbl 0984.82032 · doi:10.1016/S0370-1573(00)00070-3
[16] Zumofen, G.; Klafter, J., Phys. Rev. E, 51, 1818 (1995) · doi:10.1103/PhysRevE.51.1818
[17] Korabel, N.; Klages, R., Phys. Rev. Lett., 89, 214102 (2002) · doi:10.1103/PhysRevLett.89.214102
[18] Korabel, N.; Klages, R., Physica D, 187, 66 (2004) · Zbl 1098.82600 · doi:10.1016/S0167-2789(03)00231-8
[19] Manos, T.; Robnik, M., Phys. Rev. E, 89, 022905 (2014) · doi:10.1103/PhysRevE.89.022905
[20] Li, B.; Wang, L.; Hu, B., Phys. Rev. Lett., 88, 223901 (2002) · doi:10.1103/PhysRevLett.88.223901
[21] Li, B.; Wang, J.; Wang, L.; Zhang, G., Chaos, 15, 015121 (2005) · doi:10.1063/1.1832791
[22] Dettmann, C. P., Commun. Theor. Phys., 62, 521 (2014) · Zbl 1301.37022 · doi:10.1088/0253-6102/62/4/10
[23] Artuso, R.; Guarneri, I.; Rebuzzini, L., Chaos, 10, 189 (2000) · Zbl 0979.37031 · doi:10.1063/1.166493
[24] Alonso, D.; Ruiz, A.; de Vega, I., Physica D, 187, 184 (2004) · Zbl 1054.82009 · doi:10.1016/j.physd.2003.09.007
[25] Schmiedeberg, M.; Stark, H., Phys. Rev. E, 73, 031113/1-9 (2006) · doi:10.1103/PhysRevE.73.031113
[26] Sanders, D. P.; Larralde, H., Phys. Rev. E, 73, 026205 (2006) · doi:10.1103/PhysRevE.73.026205
[27] Hardy, J.; Weber, J., J. Math. Phys., 21, 1802 (1980) · doi:10.1063/1.524633
[28] Delecroix, V.; Hubert, P.; Lelièvre, S., Ann. Scient. Ec. Norm. Sup. 4e serie, t., 47, 1085 (2014) · Zbl 1351.37159
[29] Hannay, J. H.; McCraw, R. J., J. Phys. A: Math. Gen., 23, 887 (1990) · Zbl 0714.70015 · doi:10.1088/0305-4470/23/6/014
[30] Gutkin, E., J. Stat. Phys., 83, 7 (1996) · Zbl 1081.37525 · doi:10.1007/BF02183637
[31] Zaslavsky, G. M.; Edelman, M., Chaos, 11, 295 (2001) · Zbl 1080.37584 · doi:10.1063/1.1355358
[32] Dettmann, C. P.; Cohen, E. G. D., J. Stat. Phys., 101, 775 (2000) · Zbl 0990.82025 · doi:10.1023/A:1026477605331
[33] Cecconi, F.; Falcioni, M.; Vulpiani, A.; del Castillo-Negrete, D., Physica D, 180, 129 (2003) · Zbl 1050.82035 · doi:10.1016/S0167-2789(03)00051-4
[34] Denisov, S.; Klafter, J.; Urbakh, M., Phys. Rev. Lett., 91, 194301 (2003) · doi:10.1103/PhysRevLett.91.194301
[35] Barkai, E.; Fleurov, V., J. Stat. Phys., 96, 325 (1999) · Zbl 0963.82029 · doi:10.1023/A:1004532702233
[36] Barkai, E.; Fleurov, V.; Klafter, J., Phys. Rev. E, 61, 1164 (2000) · doi:10.1103/PhysRevE.61.1164
[37] Burioni, R.; Caniparoli, L.; Vezzani, A., Phys. Rev. E, 81, 060101(R) (2010) · doi:10.1103/PhysRevE.81.060101
[38] Barthelemy, P.; Bertolotti, J.; Wiersma, D. S., Nature, 453, 495 (2008) · doi:10.1038/nature06948
[39] Kumar, N.; Harbola, U.; Lindenberg, K., Phys. Rev. E, 82, 021101 (2010) · doi:10.1103/PhysRevE.82.021101
[40] Harbola, U.; Kumar, N.; Lindenberg, K., Phys. Rev. E, 90, 022136 (2014) · doi:10.1103/PhysRevE.90.022136
[41] Porra, J. M.; Wang, K.-G.; Masoliver, J., Phys. Rev. E, 53, 5872 (1996) · doi:10.1103/PhysRevE.53.5872
[42] Taloni, A.; Chechkin, A. V.; Klafter, J., Phys. Rev. Lett., 104, 160602 (2010) · doi:10.1103/PhysRevLett.104.160602
[43] Jeon, J.-H.; Metzler, R., Phys. Rev. E, 81, 021103 (2010) · doi:10.1103/PhysRevE.81.021103
[44] Rebenshtok, A.; Denisov, S.; Hänggi, P.; Barkai, E., Phys. Rev. Lett., 112, 110601 (2014) · doi:10.1103/PhysRevLett.112.110601
[45] Chechkin, A. V.; Lenz, F.; Klages, R., J. Stat. Mech.: Theor. Exp., 2012, L11001 · doi:10.1088/1742-5468/2012/11/L11001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.