×

zbMATH — the first resource for mathematics

Numerical simulation of the field velocities and local disturbances of a long gravity wave passing above an immersed vertical barrier. (English) Zbl 1162.76010
Summary: We study the passage of a long gravity wave above an immersed vertical barrier. The latter is placed at a right angle in the middle of the occupied fluid domain which is limited vertically by both a free surface and an impermeable horizontal bottom. We want to determine the field velocity and the local disturbances in the vicinity of the barrier. For this, we use the generalized theory of shallow water and complex-variable method. For illustration, we consider a solitary wave as an emitted long wave.
MSC:
76B15 Water waves, gravity waves; dispersion and scattering, nonlinear interaction
76B25 Solitary waves for incompressible inviscid fluids
76M40 Complex variables methods applied to problems in fluid mechanics
PDF BibTeX XML Cite
Full Text: DOI EuDML
References:
[1] E. Barthélemy, A. Kabbaj, and J.-P. Germain, “Long surface wave scattered by a step in a two-layer fluid,” Fluid Dynamics Research, vol. 26, no. 4, pp. 235-255, 2000. · Zbl 1075.76512 · doi:10.1016/S0169-5983(99)00025-8
[2] W. R. Dean, “On the reflexion of surface waves by a submerged plane barrier,” Proceedings of the Cambridge Philosophical Society, vol. 41, pp. 231-238, 1945. · Zbl 0061.46004
[3] J.-P. Germain, “Théorie générale des mouvements d’un fluide parfait pesant en eau peu profonde de profondeur constante,” Comptes Rendus Hebdomadaires des Séances de l’Académie des Sciences. Séries A et B, vol. 274, pp. A997-A1000, 1972. · Zbl 0252.76011
[4] L. Gulli, Etude du passage d’une houle en eau-peu-profonde sur une barrière verticale immergée, M.S. thesis, Universite de Grenoble, Grenoble, France, 1975.
[5] F. J. Seabra-Santos, D. P. Renouard, and A. M. Temperville, “Numerical and experimental study of the transformation of a solitary wave over a shelf or isolated obstacle,” The Journal of Fluid Mechanics, vol. 176, pp. 117-134, 1987. · doi:10.1017/S0022112087000594
[6] A. Guerziz and A. Laouar, “Passage of a long wave over a vertical barrier: calculation of the local disturbances by a complex variable method,” International Journal of Mathematics and Computer Science, vol. 1, no. 3, pp. 361-367, 2006. · Zbl 1137.76014
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.