×

Formulation of non-local space-fractional plate model and validation for composite micro-plates. (English) Zbl 07749668

Summary: It is challenging to design nano/micro-devices because of their small size and tight engineering tolerances. Computer-aided design uses mathematical models of device parts, but contemporary models are not precise enough to capture all characteristics of the materials at the nano/micro-scale. In this work, we propose a novel mathematical model for composite nano/micro-plates in bending in the framework of a space-fractional continuum mechanics approach. This model yields closer mapping of experimental results compared to existing formulations. The developed theory is named the space-Fractional Kirchhoff-Love Plate (s-FKLP). We investigate how the parameters of the s-FKLP model, responsible for the scale effect description, affect the bending behavior of the micro-plates, considering different support conditions. In addition, we compare the results predicted by s-FKLP with the previously developed simpler (one-dimensional) space-Fractional Euler-Bernoulli Beam (s-FEBB) model to show that the choice of structural analysis strategy can influence design decisions. Despite its greater complexity, the s-FKLP is a more versatile approach to modeling micro-sized structures than the s-FEBB. The proposed s-FKLP model is empirically validated using real sandwich micro-plates. We conclude model alignment with the experimental data indicating that the model is suitable for representing sandwich micro-plates. We also find that the model’s length scale parameter corresponds to the microstructure’s grain size. The findings of this research may have implications for future work in the design and optimization of micro-sized devices.

MSC:

74-XX Mechanics of deformable solids
92-XX Biology and other natural sciences
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Akgöz, B.; Civalek, Ö., Thermo-mechanical buckling behavior of functionally graded microbeams embedded in elastic medium, International Journal of Engineering Science, 85, 90-104 (2014)
[2] Akgöz, B.; Ömer Civalek, Ö., A size-dependent shear deformation beam model based on the strain gradient elasticity theory, International Journal of Engineering Science, 70, 1-14 (2013) · Zbl 1423.74452
[3] Ansari, R.; Gholami, R., Size-dependent modeling of the free vibration characteristics of postbuckled third-order shear deformable rectangular nanoplates based on the surface stress elasticity theory, Composites Part B (Engineering), 95, 301-316 (2016)
[4] Ansari, R.; Gholami, R., Size-dependent nonlinear vibrations of first-order shear deformable magneto-electro-thermo elastic nanoplates based on the nonlocal elasticity theory, International Journal of Applied Mechanics, 08, 04, Article 1650053 pp. (2016)
[5] Arefi, M.; Soltan Arani, A., Nonlocal vibration analysis of the three-layered FG nanoplates subjected to applied electric potential considering thickness stretching effect, Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 234, 9, 1183-1202 (2020)
[6] Arsat, R.; Breedon, M.; Shafiei, M.; Spizziri, P.; Gilje, S.; Kaner, R., Graphene-like nano-sheets for surface acoustic wave gas sensor applications, Chemical Physics Letters, 467, 4-6, 344-347 (2009)
[7] Aydinlik, S.; Kiris, A., Fractional calculus approach to nonlocal three-dimensional vibration analysis of plates, American Institute of Aeronautics and Astronautics, 58, 1, 355-361 (2020)
[8] Aydinlik, S.; Kiris, A.; Sumelka, W., Three-dimensional analysis of nonlocal plate vibration in the framework of space-fractional mechanics — Theory and validation, Thin-Walled Structures, 163, Article 107645 pp. (2021)
[9] Bai, S.; Shen, X., Graphene-inorganic nanocomposites, RSC Advances, 2, 1, 64-98 (2012)
[10] Baker, S. P.; Nix, W. D., Mechanical properties of compositionally modulated Au-Ni thin films: Nanoindentation and microcantilever deflection experiments, Journal of Materials Research, 9, 12, 3131-3144 (1994)
[11] Bartolucci, S.; Paras, J.; Rafiee, M.; Rafiee, J.; Lee, S.; Kapoor, D., Graphene-aluminum nanocomposites, Materials Science & Engineering A, 528, 27, 7933-7937 (2011)
[12] Bauchau, O.; Craig, J., Structural analysis with application to aerospace structures (2009), Springer: Springer Dordrecht, Heidelberg, London, New-York
[13] Bezanson, J.; Edelman, A.; Karpinski, S.; Shah, V. B., Julia: A fresh approach to numerical computing, SIAM Review, 59, 1, 65-98 (2017) · Zbl 1356.68030
[14] Burg, T. P.; Mirza, A. R.; Milovic, N.; Tsau, C. H.; Popescu, G. A.; Foster, J. S., Vacuum-packaged suspended microchannel resonant mass sensor for biomolecular detection, Journal of Microelectromechanical Systems, 15, 6, 1466-1476 (2006)
[15] Chandraseker, K.; Mukherjee, S.; Paci, J.; Schatz, G., An atomistic-continuum Cosserat rod model of carbon nanotubes, Journal of the Mechanics and Physics of Solids, 57, 6, 932-958 (2009)
[16] Dang, V.-H.; Nguyen, D.-A.; Le, M.-Q.; Duong, T.-H., Nonlinear vibration of nanobeams under electrostatic force based on the nonlocal strain gradient theory, International Journal of Mechanics and Materials in Design, 16, 2, 289-308 (2020)
[17] Davis, T. A., Algorithm 915, SuiteSparseQR: Multifrontal multithreaded rank-revealing sparse QR factorization, ACM Transactions on Mathematical Software, 38, 1 (2011) · Zbl 1365.65122
[18] Davis, Z. J.; Boisen, A., Aluminum nanocantilevers for high sensitivity mass sensors, Applied Physics Letters, 87, 1, Article 013102 pp. (2005)
[19] Faghidian, S. A.; Żur, K. K.; Reddy, J., A mixed variational framework for higher-order unified gradient elasticity, International Journal of Engineering Science, 170, Article 103603 pp. (2022) · Zbl 07444802
[20] Farokhi, H.; Ghayesh, M. H., Nonlinear mechanics of electrically actuated microplates, International Journal of Engineering Science, 123, 197-213 (2018) · Zbl 1423.74541
[21] Fu, G.; Zhou, S.; Qi, L., On the strain gradient elasticity theory for isotropic materials, International Journal of Engineering Science, 154, Article 103348 pp. (2020) · Zbl 07228679
[22] Gong, C.; Liang, J.; Hu, W.; Niu, X.; Ma, S.; Hahn, H., A healable, semitransparent silver nanowire-polymer composite conductor, Advanced Materials, 25, 30, 4186-4191 (2013)
[23] Ha, C.; Plesha, M.; Lakes, R., Chiral three-dimensional lattices with tunable Poisson’s ratio, Smart Materials and Structures, 25, 5 (2016)
[24] Ieşan, D., Deformation of beams in the grade consistent theory of microstretch elastic solids, Acta Mechanica, 231, 4, 1351-1363 (2020) · Zbl 1440.74051
[25] Ilic, B.; Craighead, H. G.; Krylov, S.; Senaratne, W.; Ober, C.; Neuzil, P., Attogram detection using nanoelectromechanical oscillators, Journal of Applied Physics, 95, 7, 3694-3703 (2004)
[26] Jalaei, M.; Thai, H.-T.; Civalek, S., On viscoelastic transient response of magnetically imperfect functionally graded nanobeams, International Journal of Engineering Science, 172, Article 103629 pp. (2022) · Zbl 07498571
[27] Jena, S.; Chakraverty, S.; Jena, R.; Tornabene, F., A novel fractional nonlocal model and its application in buckling analysis of Euler-Bernoulli nanobeam, Materials Research Express, 6, 5 (2019)
[28] Karami, B.; Ghayesh, M. H., Vibration characteristics of sandwich microshells with porous functionally graded face sheets, International Journal of Engineering Science, 189, Article 103884 pp. (2023) · Zbl 07700721
[29] Ke, L.-L.; Wang, Y.-S.; Wang, Z.-D., Non-local elastic plate theories, Proceedings of the Royal Society A, 463, 3225-3240 (2008) · Zbl 1138.74035
[30] Khaniki, H. B.; Ghayesh, M. H.; Amabili, M., A review on the statics and dynamics of electrically actuated nano and micro structures, International Journal of Non-Linear Mechanics, 129, Article 103658 pp. (2021)
[31] Khorshidi, M. A., The material length scale parameter used in couple stress theories is not a material constant, International Journal of Engineering Science, 133, 15-25 (2018)
[32] Kim, H.; Lee, J.; Kim, S. W., Analysis of SiO2 particle size using photon correlation spectroscopy, Optik, 157, 259-266 (2018)
[33] LaHaye, M.; Buu, O.; Camarota, B.; Schwab, K., Approaching the quantum limit of a nanomechanical resonator, Science, 304, 5667, 74-77 (2004)
[34] Lakes, R., Elastic and viscoelastic behavior of chiral materials, International Journal of Mechanical Sciences, 43, 7, 1579-1589 (2001) · Zbl 1049.74012
[35] Lam, J. K.; Koay, S. C.; Lim, C. H.; Cheah, K. H., A voice coil based electromagnetic system for calibration of a sub-micronewton torsional thrust stand, Measurement, 131, 597-604 (2019)
[36] Lavrik, N. V.; Sepaniak, M. J.; Datskos, P. G., Cantilever transducers as a platform for chemical and biological sensors, Review of Scientific Instruments, 75, 7, 2229-2253 (2004)
[37] Leszczyński, J., (An introduction to fractional mechanics. An introduction to fractional mechanics, Monographs no 198 (2011), The Publishing Office of Czestochowa University of Technology)
[38] Li, C.; Tian, X.; He, T., Transient thermomechanical responses of multilayered viscoelastic composite structure with non-idealized interfacial conditions in the context of generalized thermoviscoelasticity theory with time-fractional order strain, Journal of Thermal Stresses, 43, 7, 895-928 (2020)
[39] Magnucki, K.; Lewiński, J., Bending of beams with symmetrically varying mechanical properties under generalized load – shear effect, Engineering Transactions, 67, 3, 441-457 (2019)
[40] Malinowska, A.; Torres, D., Fractional calculus of variations for a combined Caputo derivative, Fractional Calculus & Applied Analysis, 14, 4 (2011) · Zbl 1273.49025
[41] Mamin, H. J.; Rugar, D., Sub-attonewton force detection at millikelvin temperatures, Applied Physics Letters, 79, 20, 3358-3360 (2001)
[42] Martinez-Criado, G., Application of micro- and nanobeams for materials science, 1505-1539 (2016)
[43] Mirjavadi, S.; Afshari, B.; Barati, M.; Hamouda, A., Transient response of porous inhomogeneous nanobeams due to various impulsive loads based on nonlocal strain gradient elasticity, International Journal of Mechanics and Materials in Design, 16, 1, 57-68 (2020)
[44] Murmu, T.; Pradhan, S. C., Small-scale effect on the free in-plane vibration of nanoplates by nonlocal continuum model, Physica E: Low-dimensional Systems and Nanostructures, 41, 8, 1628-1633 (2009)
[45] Odibat, Z., Approximations of fractional integrals and \(\operatorname{C}\) aputo fractional derivatives, Applied Mathematics and Computation, 178, 527-533 (2006) · Zbl 1101.65028
[46] Odzijewicz, T.; Malinowska, A. B.; Torres, D. F., Fractional variational calculus with classical and combined Caputo derivatives, Nonlinear Analysis. Theory, Methods & Applications, 75, 3, 1507-1515 (2012) · Zbl 1236.49043
[47] Patnaik, S.; Sidhardh, S.; Semperlotti, F., Geometrically nonlinear analysis of nonlocal plates using fractional calculus, International Journal of Mechanical Sciences, 179 (2020)
[48] Pawlak, T. P.; O’Neill, M., Grammatical evolution for constraint synthesis for mixed-integer linear programming, Swarm and Evolutionary Computation, 64, Article 100896 pp. (2021)
[49] Podlubny, I., (Fractional differential equations. Fractional differential equations, Mathematics in science and engineering, vol. 198 (1999), Academin Press) · Zbl 0924.34008
[50] Rogers, J.; Someya, T.; Huang, Y., Materials and mechanics for stretchable electronics, Science, 327, 5973, 1603-1607 (2010)
[51] Schedin, F.; Geim, A.; Morozov, S.; Hill, E.; Blake, P.; Katsnelson, M., Detection of individual gas molecules adsorbed on graphene, Nature Materials, 6, 9, 652-655 (2007)
[52] Shankar, R.; Ghosh, T.; Spontak, R., Electroactive nanostructured polymers as tunable actuators, Advanced Materials, 19, 17, 2218-2223 (2007)
[53] Shariati, M.; Azizi, B.; Hosseini, M.; Shishesaz, M., On the calibration of size parameters related to non-classical continuum theories using molecular dynamics simulations, International Journal of Engineering Science, 168, Article 103544 pp. (2021) · Zbl 07411528
[54] Sidhardh, S.; Patnaik, S.; Semperlotti, F., Fractional-order structural stability: Formulation and application to the critical load of nonlocal slender structures, International Journal of Mechanical Sciences, 201 (2021)
[55] Sidhardh, S.; Patnaik, S.; Semperlotti, F., Fractional-order shell theory: Formulation and application to the analysis of nonlocal cylindrical panels, Journal of Applied Mechanics, 89, 8 (2022)
[56] Stempin, P.; Sumelka, W., Space-fractional Euler-Bernoulli beam model - Theory and identification for silver nanobeam bending, International Journal of Mechanical Sciences, 186 (2020)
[57] Stempin, P.; Sumelka, W., Dynamics of space-fractional Euler-Bernoulli and timoshenko beams, Materials, 14, 8, 1817 (2021)
[58] Stempin, P.; Sumelka, W., Formulation and experimental validation of space-fractional Timoshenko beam model with functionally graded materials effects, Computational Mechanics, 68, 3, 697-708 (2021) · Zbl 1477.74060
[59] Stempin, P.; Sumelka, W., Space-fractional small-strain plasticity model for microbeams including grain size effect, International Journal of Engineering Science, 175, Article 103672 pp. (2022) · Zbl 07517084
[60] Sumelka, W., Thermoelasticity in the framework of the fractional continuum mechanics, Journal of Thermal Stresses, 37, 6, 678-706 (2014)
[61] Sumelka, W., On fractional non-local bodies with variable length scale, Mechanics Research Communications, 86, Supplement C, 5-10 (2017)
[62] Sumelka, W.; Blaszczyk, T., Fractional continua for linear elasticity, Archives of Mechanics, 66, 3, 147-172 (2014) · Zbl 1298.74026
[63] Sumelka, W.; Blaszczyk, T.; Liebold, C., Fractional Euler-Bernoulli beams: Theory, numerical study and experimental validation, European Journal of Mechanics. A. Solids, 54, 243-251 (2015) · Zbl 1406.74408
[64] Sumelka, W.; Zaera, R.; Fernández-Sáez, J., A theoretical analysis of the free axial vibration of non-local rods with fractional continuum mechanics, Meccanica, 50, 9, 2309-2323 (2015) · Zbl 1325.74088
[65] Szajek, K.; Sumelka, W., Discrete mass-spring structure identification in nonlocal continuum space-fractional model, The European Physical Journal Plus, 134, 9, 448 (2019)
[66] Wang, Z.; Bu, M.; Hu, N.; Zhao, L., An overview on room-temperature chemiresistor gas sensors based on 2D materials: Research status and challenge, Composites Part B (Engineering), 248, Article 110378 pp. (2023)
[67] Wang, J. F.; Shi, S. Q.; Liu, Y. Z.; Yang, J. P.; ho Tam, L., Multiscale simulation of temperature- and pressure-dependent nonlinear dynamics of PMMA/CNT composite plates, Nonlinear Dynamics, 109, 3, 1517-1550 (2022)
[68] Xiao, D.; Xia, D.; Li, Q.; Hou, Z.; Liu, G.; Wang, X., A double differential torsional accelerometer with improved temperature robustness, Sensors and Actuators A: Physical, 243, 43-51 (2016)
[69] Xie, P.; Xiong, Q.; Fang, Y.; Qing, Q.; Lieber, C., Local electrical potential detection of DNA by nanowire-nanopore sensors, Nature Nanotechnology, 7, 2, 119-125 (2012)
[70] Yang, R.; Chang, Y.; Yang, X.; Dai, J.; Chen, Y.; Chang, W., Electromechanical sorting method for improving the sensitivity of micropyramid carbon nanotube film flexible force sensor, Composites Part B (Engineering), 217, Article 108818 pp. (2021)
[71] Yue, Y. M.; Xu, K. Y.; Tan, Z. Q.; Wang, W. J.; Wang, D., The influence of surface stress and surface-induced internal residual stresses on the size-dependent behaviors of Kirchhoff microplate, Archive of Applied Mechanics, 89, 7, 1301-1315 (2019)
[72] Zhang, L.; Guo, J.; Xing, Y., Nonlocal analytical solution of functionally graded multilayered one-dimensional hexagonal piezoelectric quasicrystal nanoplates, Acta Mechanica, 230, 5, 1781-1810 (2019) · Zbl 1428.74076
[73] Zheng, Y.; Karami, B.; Shahsavari, D., On the vibration dynamics of heterogeneous panels under arbitrary boundary conditions, International Journal of Engineering Science, 178, Article 103727 pp. (2022) · Zbl 07575009
[74] Zozulya, V., Higher order theory of micropolar plates and shells, ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik, 98, 6, 886-918 (2018)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.