×

Converting chaos into periodic motion by state feedback control. (English) Zbl 1011.93057

Summary: A simple control method is presented to convert chaos into periodic motion by using the linear state feedback of an available system variable. The low-periodic orbits can be derived from the chaotic attractor with slight change of the dynamical structure in the original dynamics. Melnikov’s perturbation method in generalized Hamiltonian systems is introduced to explain the control mechanism of directing chaotic motion towards low-periodic motion in the Lorenz equations. Moreover, the existence of periodic orbits is examined in the perturbed Lorenz system. Simulation results verify the effectiveness of Melnikov’s analysis.

MSC:

93C10 Nonlinear systems in control theory
37D45 Strange attractors, chaotic dynamics of systems with hyperbolic behavior
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Ashhab, M.; Salapaka, M. V.; Dahleh, M.; Mezić, I., Dynamical analysis and control of microcantilevers, Automatica, 35, 1663-1670 (1999) · Zbl 0941.93044
[2] Basios, V.; Bountis, T.; Nicolis, G., Controlling the onset of homoclinic chaos due to parametric noise, Physics Letters A, 251, 250-258 (1999) · Zbl 0977.70019
[3] Belhaq, M.; Houssni, M., Suppression of chaos in averaged oscillator driven by external and parametric excitations, Chaos, Solitons & Fractals, 11, 1237-1246 (2000) · Zbl 0960.37011
[4] Braiman, Y.; Goldhirsch, I., Taming chaotic dynamics with weak periodic perturbations, Physical Review Letters, 66, 2545-2548 (1991) · Zbl 0968.37508
[5] Cai, C.; Xu, Z.; Xu, W.; Feng, B., Notch filter feedback control in a class of chaotic systems, Automatica, 38, 695-701 (2002) · Zbl 1054.93047
[6] Chacón, R., General results on chaos suppression for biharmonically driven dissipative systems, Physics Letters A, 257, 293-300 (1999)
[7] Guémez, J.; Gutiérrez, J. M.; Iglesias, A.; Matı́as, M. A., Stabilization of periodic and quasiperiodic motion in chaotic systems through changes in the system variables, Physics Letters A, 190, 429-433 (1994)
[8] Guémez, J.; Gutiérrez, J. M.; Iglesias, A.; Matı́as, M. A., Suppression of chaos through changes in the system variablesTransient chaos and crises, Physica D, 79, 164-173 (1994) · Zbl 0888.58029
[9] Gutiérrez, J. M.; Iglesias, A.; Guémez, J.; Matı́as, M. A., Suppression of chaos through changes in the system variables through Poincaré and Lorenz return maps, International Journal of Bifurcation and Chaos, 7, 1305-1313 (1996) · Zbl 0874.58041
[10] Hunt, E. R., Stabilizing high-period orbits in a chaotic systemThe dioderesonator, Physical Review Letters, 67, 1953-1955 (1991)
[11] Lai, Y. C.; Ding, M.; Grebogi, C., Controlling Hamiltonian chaos, Physical Review E, 47, 86-92 (1993)
[12] Li, J.; Zhang, J., New treatment on bifurcations of periodic solutions and homoclinic orbits at high r in the Lorenz equations, SIAM Journal of Applied Mathematics, 53, 1059-1071 (1993) · Zbl 0781.34031
[13] Mirus, K. A.; Sprott, J. C., Controlling chaos in low- and high-dimensional systems with periodic parametric perturbations, Physical Review E, 59, 5313-5324 (1999)
[14] Ott, E.; Grebogi, C.; Yorke, J. A., Controlling chaos, Physical Review Letters, 64, 1996-1999 (1990)
[15] Richter, H., Controlling the Lorenz systemCombining global and local schemes, Chaos, Solitons & Fractals, 12, 2375-2380 (2001) · Zbl 1073.93537
[16] Robbins, K. A., Periodic solutions and bifurcation structure at high r in the Lorenz model, SIAM Journal of Applied Mathematics, 36, 457-472 (1979) · Zbl 0407.76077
[17] Rollins, R. W.; Parmananda, P.; Sherard, P., Controlling chaos in highly dissipative systemsA simple recursive algorithm, Physical Review E, 47, 780-783 (1993)
[18] Romeiras, F. J.; Grebogi, C.; Ott, E.; Dayawansa, W. P., Controlling chaotic dynamical systems, Physica D, 58, 165-192 (1992) · Zbl 1194.37140
[19] Yang, S. K.; Chen, C. L.; Yau, H. T., Control of chaos in Lorenz system, Chaos, Solitons & Fractals, 13, 767-780 (2002) · Zbl 1031.34042
[20] Yang, L.; Liu, Z. R., An improvement and proof of OGY method, Applied Mathematics & Mechanics, 19, 1-7 (1998) · Zbl 0906.58029
[21] Yang, T.; Yang, L.; Yang, C., Impulsive control of Lorenz system, Physica D, 110, 18-24 (1997) · Zbl 0925.93414
[22] Yu, X., Controlling Lorenz chaos, International Journal of Systems Science, 27, 355-359 (1996) · Zbl 0853.93028
[23] Yu, W., Passive equivalence of chaos in Lorenz System, IEEE Transactions on Circuits and Systems: I, 46, 876-878 (1999)
[24] Yu, X., Chen, G., Song, Y., Cao, Z., & Xia, Y. (2000). A generalized OGY method for controlling higher order chaotic systems. Proceeding of IEEE Conference on Control & Decision; Yu, X., Chen, G., Song, Y., Cao, Z., & Xia, Y. (2000). A generalized OGY method for controlling higher order chaotic systems. Proceeding of IEEE Conference on Control & Decision
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.