×

On the uniform boundedness theorem in fuzzy quasi-normed spaces. (English) Zbl 1392.46061

Summary: We prove that a family of continuous linear operators from a fuzzy quasi-normed space of the half second category to a fuzzy quasi-normed space is uniformly fuzzy bounded if and only if it is pointwise fuzzy bounded. This result generalizes and unifies several well-known results; in fact, the classical uniform boundedness principle, or Banach-Steinhauss theorem, is deduced as a particular case. Furthermore, we establish the relationship between uniform fuzzy boundedness and equicontinuity which allows us to give a uniform boundedness theorem in the class of paratopological vector spaces. The classical result for topological vector spaces is deduced as a corollary.

MSC:

46S40 Fuzzy functional analysis
47S40 Fuzzy operator theory
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Alegre, C.; Ferrer, J.; Gregori, V., Quasi-uniformities on real vector spaces, Indian J. Pure Appl. Math., 28, 929-937, (1997) · Zbl 0917.46003
[2] Alegre, C.; Ferrer, J.; Gregori, V., On pairwise Baire bitopological spaces, Publ. Math. (Debr.), 55, 1-2, 3-15, (1999) · Zbl 0932.54029
[3] Alegre, C.; Romaguera, S., On paratopological vector spaces, Acta Math. Hung., 101, 237-261, (2003) · Zbl 1049.54029
[4] Alegre, C.; Romaguera, S., Characterization of metrizable topological vector spaces and their asymmetric generalization in terms of fuzzy (quasi-)norms, Fuzzy Sets Syst., 161, 2181-2192, (2010) · Zbl 1203.46049
[5] Alegre, C.; Romaguera, S.; Veeramani, P., The uniform boundedness theorem in asymmetric normed spaces, Abstr. Appl. Anal., 2012, (2002), Art. ID 809626, 8 pp · Zbl 1262.46002
[6] Aliprantis, C.; Border, K., Infinite dimensional analysis, (2006), Springer New York · Zbl 1156.46001
[7] Bag, T.; Samanta, S. K., Finite dimensional fuzzy normed linear spaces, J. Fuzzy Math., 11, 687-705, (2003) · Zbl 1045.46048
[8] Bag, T.; Samanta, S. K., Fuzzy bounded linear operators, Fuzzy Sets Syst., 151, 513-547, (2005) · Zbl 1077.46059
[9] Bag, T.; Samanta, S. K., A comparative study of fuzzy norms on a linear space, Fuzzy Sets Syst., 159, 670-684, (2008) · Zbl 1178.46074
[10] Banach, S.; Steinhauss, H., Sur le principe de la condensation de singularités, Fundam. Math., 9, 50-61, (1927) · JFM 53.0243.02
[11] Cho, Y. J.; Grabiec, M.; Radu, V., On nonsymmetric topological and probabilistic structures, (2006), Nova Science Publisher, Inc. New York · Zbl 1219.54001
[12] Cobzaş, S., Separation of convex sets and best approximation in spaces with asymmetric norm, Quaest. Math., 27, 275-296, (2004) · Zbl 1082.41024
[13] Cobzaş, S., Asymmetric locally convex spaces, Int. J. Math. Math. Sci., 16, 2585-2608, (2005) · Zbl 1096.46002
[14] Cobzaş, S., Compact and precompact sets in asymmetric locally convex spaces, Topol. Appl., 156, 1620-1629, (2009) · Zbl 1185.46001
[15] Cobzaş, S., Functional analysis in asymmetric normed spaces, (2012), Birkhäuser · Zbl 1296.46001
[16] García-Raffi, L. M.; Romaguera, S.; Sánchez-Pérez, E. A., Sequence spaces and asymmetric norms in the theory of computational complexity, Math. Comput. Model., 36, 1-11, (2002) · Zbl 1063.68057
[17] George, A.; Veeramani, P., On some results in fuzzy metric spaces, Fuzzy Sets Syst., 64, 395-399, (1994) · Zbl 0843.54014
[18] Golet, I., On generalized fuzzy normed spaces and coincidence fixed point theorems, Fuzzy Sets Syst., 161, 1138-1144, (2010) · Zbl 1228.47073
[19] Gregori, V.; Romaguera, S., Fuzzy quasi-metric spaces, Appl. Gen. Topol., 5, 129-136, (2004) · Zbl 1076.54005
[20] Hahn, H., Über folgen linearer operationen, Monatshefte Math. Phys., 32, 1, (1922) · JFM 48.0473.01
[21] Hausdorff, F., Zur theorie der linearen metrischen rdume, J. Reine Angew. Math., 167, 294-311, (1932) · JFM 58.1113.05
[22] Kramosil, I.; Michalek, J., Fuzzy metrics and statistical metric spaces, Kybernetika, 11, 326-334, (1975)
[23] Künzi, H. P.A., Nonsymmetric distances and their associated topologies: about the origins of basic ideas in the area of asymmetric topology, (Handbook of the History of General Topology, vol. 3, (2001), Kluwer Academic Publishers Dordrecht), 853-968 · Zbl 1002.54002
[24] Page, W., Topological uniform structures, (1978), Dover Publ. Inc. New York · Zbl 0397.46001
[25] Schweizer, B.; Sklar, A., Statistical metric spaces, Pac. J. Math., 10, 314-334, (1960) · Zbl 0091.29801
[26] Song, M. L.; Fang, J. X., Resonance theorems for family of quasi-homogeneous operators in fuzzy normed linear spaces, Fuzzy Sets Syst., 159, 708-719, (2008) · Zbl 1178.46076
[27] Yan, C. H., Level topologies of fuzzifying topological linear spaces and their applications, Fuzzy Sets Syst., 158, 1803-1813, (2007) · Zbl 1123.46061
[28] Zhang, G.; Zhang, M., On the normability of generalized šerstnev PN spaces, J. Math. Anal. Appl., 340, 1000-1011, (2008) · Zbl 1134.54007
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.