×

Theory of indentation on multiferroic composite materials. (English) Zbl 1200.74113

Summary: This article presents a general theory on indentation over a multiferroic composite half-space. The material is transversely isotropic and magneto-electro-elastic with its axis of symmetry normal to the surface of the half-space. Based on the corresponding half-space Green’s functions to point sources applied on the surface, explicit expressions for the generalized pressure vs. indentation depth are derived for the first time for the three common indenters (flat-ended, conical, and spherical punches). The important multiphase coupling issue is discussed in detail, with the weak and strong coupling being correctly revisited. The derived analytical solutions of indentation will not only serve as benchmarks for future numerical studies of multiphase composites, but also have important applications to experimental test and characterization of multiphase materials, in particular, of multiferroic properties.

MSC:

74M15 Contact in solid mechanics
74E30 Composite and mixture properties
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Benveniste, Y., Magnetoelectric effect in fibrous composites with piezoelectric and piezomagnetic phases, Phys. Rev. B., 51, 16424-16427 (1995)
[2] Chen, W. Q., On piezoelectric contact problem for a smooth punch, Int. J. Solids Struct., 37, 2331-2340 (2000) · Zbl 0974.74045
[3] Chen, W. Q.; Ding, H. J., Indentation of a transversely isotropic piezoelectric half-space by a rigid sphere, Acta Mech. Solida Sin., 12, 114-120 (1999)
[4] Chen, W. Q.; Lee, K. Y., Alternative state space formulations for magnetoelectric thermoelasticity with transverse isotropy and the application to bending analysis of nonhomogeneous plates, Int. J. Solids Struct., 40, 5689-5705 (2003) · Zbl 1059.74518
[5] Chen, W. Q.; Lee, K. Y.; Ding, H. J., General solution for transversely isotropic magneto-electro-thermo-elasticity and the potential theory method, Int. J. Eng. Sci., 42, 1361-1379 (2004) · Zbl 1211.74062
[6] Chen, W. Q.; Shioya, T.; Ding, H. J., The elasto-electric field for a rigid conical punch on a transversely isotropic piezoelectric half-space, J. Appl. Mech., 66, 764-771 (1999)
[7] Ding, H. J.; Chen, W. Q., Three Dimensional Problems of Piezoelasticity (2001), Nova Science Publishers: Nova Science Publishers New York · Zbl 1010.74025
[8] Ding, H. J.; Chen, W. Q.; Zhang, L. C., Elasticity of Transversely Isotropic Materials (2006), Springer: Springer Dordrecht, The Netherlands · Zbl 1101.74001
[9] Fabrikant, V. I., Applications of Potential Theory in Mechanics: a Selection of New Results (1989), Kluwer Academic Publishers: Kluwer Academic Publishers The Netherlands · Zbl 0744.73016
[10] Fabrikant, V. I., Mixed Boundary Value Problems of Potential Theory and their Applications in Engineering (1991), Kluwer Academic Publishers: Kluwer Academic Publishers The Netherlands · Zbl 0732.31001
[11] Feng, W. J.; Pan, E.; Wang, X., Dynamic fracture analysis of a penny-shaped crack in a magnetoelectroelastic layer, Int. J. Solids Struct., 44, 7955-7974 (2007) · Zbl 1167.74548
[12] Gao, H.; Chiu, C. H.; Lee, J., Elastic contact versus indentation modeling of multi-layered materials, Int. J. Solids Struct., 29, 2471-2492 (1992)
[13] Giannakopoulos, A. E., Strength analysis of spherical indentation of piezoelectric materials, J. Appl. Mech., 67, 409-416 (2000) · Zbl 1110.74456
[14] Giannakopoulos, A. E.; Parmaklis, A. Z., The contact problem of a circular rigid punch on piezomagnetic materials, Int. J. Solids Struct., 44, 4593-4612 (2007) · Zbl 1166.74397
[15] Giannakopoulos, A. E.; Suresh, S., Theory of indentation of piezoelectric materials, Acta Mater., 47, 2153-2164 (1999)
[16] Gladwell, G. M.L., Contact Problems in the Classical Theory of Elasticity (1980), Sijthoff and Noordhoff: Sijthoff and Noordhoff The Netherland · Zbl 0431.73094
[17] Hanson, M. T., The elastic field for conical indentation including sliding friction for transverse isotropy, J. Appl. Mech., 59, S123-S130 (1992) · Zbl 0761.73100
[18] Hanson, M. T., The elastic field for spherical Hertzian contact including sliding friction for transverse isotropy, J. Tribol., 114, 604-610 (1992)
[19] Hanson, M. T.; Puja, I. W., The elastic field resulting from elliptical Hertzian contact of transversely isotropic bodies: closed-form solutions for normal and shear loading, J. Appl. Mech., 64, 457-465 (1997) · Zbl 0905.73062
[20] Hou, P. F.; Leung, A. Y.T.; Ding, H. J., The elliptical Hertzian contact of transversely isotropic magnetoelectroelastic bodies, Int. J. Solids Struct., 40, 2833-2850 (2003) · Zbl 1032.74040
[21] Hou, P. F.; Ding, H. J.; Chen, J. Y., Green’s functions for transversely isotropic magnetoelectroelastic media, Int. J. Eng. Sci., 43, 826-858 (2005) · Zbl 1211.74099
[22] Johnson, K. L., Contact Mechanics (1985), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0599.73108
[23] Kalinin, S. V.; Bonnell, D. A., Imaging mechanism of piezoresponse force microscopy of ferroelectric surfaces, Phys. Rev. B, 65, 125408 (2002)
[24] Kalinin, S. V.; Karapetian, E.; Kachanov, M., Nanoelectromechanics of piezoresponse force microscopy, Phys. Rev. B, 70, 184101 (2004)
[25] Kalinin, S. V.; Mirman, B.; Karapetian, E., Relationship between direct and converse piezoelectric effect in a nanoscaled electromechanical contact, Phys. Rev. B, 76, 212102 (2007)
[26] Kalinin, S. V.; Rodriguez, B. J.; Jesse, S.; Karapetian, E.; Mirman, B.; Eliseev, E. A.; Morozovska, A. N., Nanoscale electromechanics of ferroelectric and biological systems: a new dimension in scanning probe microscopy, Annu. Rev. Mater. Res., 37, 189-238 (2007)
[27] Karapetian, E.; Kachanov, M.; Kalinin, S. V., Nanoelectromechanics of piezoelectric indentation and applications to scanning probe microscopies of ferroelectric materials, Phil. Mag., 85, 1017-1051 (2005)
[28] Karapetian, E.; Kachanov, M.; Kalinin, S. V., Stiffness relations for piezoelectric indentation of flat and non-flat punches of arbitrary planform: applications to probing nanoelectromechanical properties of materials, J. Mech. Phys. Solids, 57, 673-688 (2009) · Zbl 1169.74033
[29] Karapetian, E.; Kachanov, M.; Sevostianov, I., The principle of correspondence between elastic and piezoelectric problems, Arch. Appl. Mech., 72, 564-587 (2002) · Zbl 1027.74023
[30] Lawn, B. R.; Wilshaw, T. R., Review, indentation fracture: principles and applications, J. Mater. Sci., 10, 1049-1081 (1975)
[31] Li, J. Y., Uniqueness and reciprocity theorems for linear thermo-electro-magneto-elasticity, Q. J. Mech. Appl. Math., 56, 35-43 (2003) · Zbl 1043.74015
[32] Li, J. Y.; Dunn, M. L., Micromechanics of magnetoelectroelastic composite materials: average fields and effective behavior, J. Intell. Mater. Syst. Struct., 7, 404-415 (1998)
[33] Liu, J. X.; Liu, X. L.; Zhao, Y. B., Green’s functions for anisotropic magneto-electro-elastic solids with an elliptical cavity or a crack, Int. J. Eng. Sci., 39, 1405-1418 (2001) · Zbl 1210.74073
[34] Nan, C. W., Magnetoelectric effect in composites of piezoelectric and piezomagnetic phases, Phys. Rev. B, B50, 6082-6088 (1994)
[35] Nan, C. W.; Bichurin, M. I.; Dong, S. X.; Viehland, D.; Srinivasan, G., Multiferroic magnetoelectric composites: historical perspective, status, and future directions, J. Appl. Phys., 103, 031101 (2008)
[36] Pan, E., Exact solution for simply supported and multilayered magneto-electro-elastic plates, J. Appl. Mech., 68, 608-618 (2001) · Zbl 1110.74612
[37] Pan, E., Three-dimensional Green’s functions in anisotropic magneto-electro-elastic bimaterials, Z. Angew. Math. Phys., 53, 815-838 (2002) · Zbl 1031.74024
[38] Pan, E.; Wang, R., Effects of geometric size and mechanical boundary conditions on magnetoelectric coupling in multiferroic composites, J. Phys. D: Appl. Phys., 42, 245503 (2009)
[39] Petrov, V. M.; Srinivasan, G., Enhancement of magnetoelectric coupling in functionally graded ferroelectric and ferromagnetic bilayers, Phys. Rev., B78, 184421 (2008)
[40] Sackfield, A.; Hills, D. A.; Nowell, D., Mechanics of Elastic Contacts (1993), Butterworth-Heinemann: Butterworth-Heinemann London · Zbl 0631.73097
[41] Sih, G. C.; Chen, E. P., Dilatational and distortional behavior of cracks in magnetoelectroelastic materials, Theor. Appl. Fract. Mech., 40, 1-21 (2003)
[42] Sneddon, I. N., The relation between load and penetration in the axisymmetric Boussinesq problem for a punch of arbitrary profile, Int. J. Eng. Sci., 3, 47-57 (1965) · Zbl 0128.42002
[43] Spaldin, N. A.; Fiebig, M., The renaissance of magnetoelectric multiferroics, Science, 309, 391-392 (2005)
[44] Vlassak, J. J.; Ciavarella, M.; Barber, J. R.; Wang, X., The indentation modulus of elastically anisotropic materials for indenters of arbitrary shape, J. Mech. Phys. Solids, 51, 1701-1721 (2003) · Zbl 1077.74589
[45] Wang, J. H.; Chen, C. Q.; Lu, T. J., Indentation responses of piezoelectric films, J. Mech. Phys. Solids, 56, 3331-3351 (2008) · Zbl 1171.74346
[46] Wang, X.; Shen, Y. P., The general solution of three-dimensional problems in magnetoelectroelastic media, Int. J. Eng. Sci., 40, 1069-1080 (2002) · Zbl 1211.74103
[47] Wang, X.; Pan, E.; Albrecht, J. D., Two-dimensional Green’s functions in anisotropic multiferroic bimaterials with a viscous interface, J. Mech. Phys. Solids, 56, 2863-2875 (2008) · Zbl 1171.74347
[48] Wu, T. L.; Huang, J. H., Closed-form solutions for the magnetoelectric coupling coefficients in fibrous composites with piezoelectric and piezomagnetic phase, Int. J. Solids Struct., 37, 2981-3009 (2000) · Zbl 0997.74019
[49] Yang, F. Q., Analysis of the axisymmetric indentation of a semi-infinite piezoelectric material: the evaluation of the contact stiffness and the effective piezoelectric constant, J. Appl. Phys., 103, 074115 (2008)
[50] Yu, H. Y., A concise treatment of indentation problems in transversely isotropic half-spaces, Int. J. Solids Struct., 38, 2213-2232 (2001) · Zbl 1007.74059
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.