×

New mixed finite elements for plane elasticity and Stokes equations. (English) Zbl 1235.74324

Summary: We consider mixed finite elements for the plane elasticity system and the Stokes equation. For the unmodified Hellinger-Reissner formulation of elasticity in which the stress and displacement fields are the primary unknowns, we derive two new nonconforming mixed finite elements of triangle type. Both elements use piecewise rigid motions to approximate the displacement and piecewise polynomial functions to approximate the stress, where no vertex degrees of freedom are involved. The two stress finite element spaces consist respectively of piecewise quadratic polynomials and piecewise cubic polynomials such that the divergence of each space restricted to a single simplex is contained in the corresponding displacement approximation space. We derive stability and optimal order approximation for the elements. We also give some numerical results to verify the theoretical results.
For the Stokes equation, introducing the symmetric part of the gradient tensor of the velocity as a stress variable, we present a stress-velocity-pressure field Stokes system. We use some plane elasticity mixed finite elements, including the two elements we proposed, to approximate the stress and velocity fields, and use continuous piecewise polynomial functions to approximate the pressure with the gradient of the pressure approximation being in the corresponding velocity finite element spaces. We derive stability and convergence for these methods.

MSC:

74S05 Finite element methods applied to problems in solid mechanics
76M10 Finite element methods applied to problems in fluid mechanics
65N15 Error bounds for boundary value problems involving PDEs
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
65N50 Mesh generation, refinement, and adaptive methods for boundary value problems involving PDEs
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Amara M, Thomas J M. Equilibrium finite elements for the linear elastic problem. Numer Math, 1979 33: 367–383 · Zbl 0401.73079 · doi:10.1007/BF01399320
[2] Arnold D N, Awanou G. Rectangular mixed finite elements for elasticity. Math Models Methods Appl Sci, 2005, 15: 1417–1429 · Zbl 1077.74044 · doi:10.1142/S0218202505000741
[3] Arnold D N, Brezzi F, Douglas J Jr. Peers: A new mixed finite element for plane elasticity. Jpn J Appl Math, 1984, 1: 347–367 · Zbl 0633.73074 · doi:10.1007/BF03167064
[4] Arnold D N, Douglas J Jr, Gupta C P. A family of higher order mixed finite element methods for plane elasticity. Numer Math, 1984, 45: 1–22 · Zbl 0558.73066 · doi:10.1007/BF01379659
[5] Arnold D N, Falk R S. A new mixed formulation for elasticity. Numer Math, 1988, 53: 13–30 · Zbl 0621.73102 · doi:10.1007/BF01395876
[6] Arnold D N, Winther R. Mixed finite elements for elasticity. Numer Math, 2002, 92: 401–419 · Zbl 1090.74051 · doi:10.1007/s002110100348
[7] Arnold D N, Winther R. Nonconforming mixed elements for elasticity. Math Models Methods Appl Sci, 2003, 13: 295–307 · Zbl 1057.74036 · doi:10.1142/S0218202503002507
[8] Behr M A, Franca L P, Tezduyar T E. Stabilized finite element methods for the velocity-pressure-stress formulation of incompressible flows. Comput Methods Appl Mech Engrg, 1993, 104: 31–48 · Zbl 0771.76033 · doi:10.1016/0045-7825(93)90205-C
[9] Bochev P B, Gunzburger M D. Least-squares for the velocity-pressure-stress formulation of the stokes equations. Comput Methods Appl Mech Engrg, 1995, 126: 267–287 · Zbl 1067.76562 · doi:10.1016/0045-7825(95)00826-M
[10] Bochev P B, Gunzburger M D. Finite element methods of least- squares type. SIAM Review, 1998, 40: 789–837 · Zbl 0914.65108 · doi:10.1137/S0036144597321156
[11] Bramble J H, Lazarov R D, Pasciak J. Least-squares methods for linear elasticity based on a discrete minus one inner product. Comput Methods Appl Mech Engng, 2001, 191: 727–744 · Zbl 0999.74107 · doi:10.1016/S0045-7825(01)00255-9
[12] Brezzi F. On the existence, uniqueness and approximation of saddle point problems arising from Lagrange multipliers. RAIRO Numer Anal, 1974, 8: 129–151 · Zbl 0338.90047
[13] Brezzi F, Fortin M. Mixed and Hybrid Finite Element Methods. Berlin: Springer-Verlag, 1991 · Zbl 0788.73002
[14] Cai Z, Lee B, Wang P. Least-squares methods for incompressible newtonian fluid flow: Linear stationary problems. SIAM J Numer Anal, 2004, 42: 843–859 · Zbl 1159.76347 · doi:10.1137/S0036142903422673
[15] Cai Z, Manteuffel T A, McCormick S F. First-order system least squares for second-order partial differential equations: Part II. SIAM J Numer Anal, 1997, 34: 425–454 · Zbl 0912.65089 · doi:10.1137/S0036142994266066
[16] Chang C L. A mixed finite element method for the stokes problem: an accelerations-pressure formulation. Appl Math Comput, 1990, 36: 135–146 · Zbl 0702.76075 · doi:10.1016/0096-3003(90)90016-V
[17] Farhloul M, Fortin M. Dual hybrid methods for the elasticity and the stokes problems: a unified approach. Numer Math, 1997, 76: 419–440 · Zbl 0880.73064 · doi:10.1007/s002110050270
[18] Farhloul M, Zine A M. A new mixed finite element method for the stokes problem. J Math Anal Appl, 2002, 276: 329–342 · Zbl 1014.76046 · doi:10.1016/S0022-247X(02)00447-X
[19] Fraejis de Veubeke B M. Displacement and equilibrium models in the finite element method. In: Zienkiewicz O C, Holister G, eds. Stress Analysis. New York: Wiley, 1965, 145–197
[20] Franca L P, Stenberg R. Error analysis of Galerkin least squares methods for the elasticity equations. SIAM J Numer Anal, 1991, 28: 1680–1697 · Zbl 0759.73055 · doi:10.1137/0728084
[21] Girault V, Raviart P A. Finite Element Methods for Navier-Stokes Equations: Theory and Algorithms. Berlin-New York: Springer-Verlag, 1986 · Zbl 0585.65077
[22] Gunzburger M D. Finite Element Methods for Viscous Incompressible Flows: A Guide to Theory, Practice, and Algorithms. London: Academic Press, 1989 · Zbl 0697.76031
[23] Hu J, Shi Z C. Lower order rectangular nonconforming mixed finite elements for plane elasticity. SIAM J Numer Anal, 2007, 46: 88–102 · Zbl 1166.65395 · doi:10.1137/060669681
[24] Jiang B. The Least-Squares Finite Element Method: Theory and Applications in Computational Fluid Dynamics and Electro-Magnetics. Berlin: Springer, 1998
[25] Johnson C. A mixed finite element method for the Navier-Stokes equations. RAIRO M2AN, 1978, 12: 335–348 · Zbl 0399.76035
[26] Johnson C, Mercier B. Some equilibrium finite element methods for two-dimensional elasticity problems. Numer Math, 1978, 30: 103–116 · Zbl 0427.73072 · doi:10.1007/BF01403910
[27] Mignot A L, Surry C. A mixed finite element family in plane elasticity. Appl Math Model, 1981, 5: 259–262 · Zbl 0469.73054 · doi:10.1016/S0307-904X(81)80076-5
[28] Stein E, Rolfes R. Mechanical conditions for stability and optimal convergence of mixed finite elements for linear plane elasticity. Comput Methods Appl Mech Engrg, 1990, 84: 77–95 · Zbl 0729.73208 · doi:10.1016/0045-7825(90)90090-9
[29] Stenberg R. On the construction of optimal mixed finite element methods for the linear elasticity problem. Numer Math, 1986, 48: 447–462 · Zbl 0563.65072 · doi:10.1007/BF01389651
[30] Stenberg R. A family of mixed finite elements for the elasticity problem. Numer Math, 1988, 53: 513–538 · Zbl 0632.73063 · doi:10.1007/BF01397550
[31] Stenberg R. Two low-order mixed methods for the elasticity problem. In: The Mathematics of Finite Elements and Applications, vol. VI. London: Academic Press, 1988, 271–280 · Zbl 0686.73049
[32] Watwood Jr V B, Hartz B J. An equilibrium stress field model for finite element solution of two-dimensional elastostatic problems. Internat J Solids Structures, 1968, 4: 857–873 · Zbl 0164.26201 · doi:10.1016/0020-7683(68)90083-8
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.