×

An infinite natural product. (English) Zbl 1522.03186

Summary: We study a countably infinite iteration of the natural product between ordinals.We present an “effective” way to compute this countable natural product; in the non trivial cases the result depends only on the natural sum of the degrees of the factors, where the degree of a nonzero ordinal is the largest exponent in its Cantor normal form representation. Thus we are able to lift former results about infinitary sums to infinitary products. Finally, we provide an order-theoretical characterization of the infinite natural product; this characterization merges in a nontrivial way a theorem by Carruth describing the natural product of two ordinals and a known description of the ordinal product of a possibly infinite sequence of ordinals.

MSC:

03E10 Ordinal and cardinal numbers
06A06 Partial orders, general
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Altman H., Intermediate arithmetic operations on ordinal numbers, MLQ Math. Log. Q. 63 (2017), no. 3-4, 228-242.
[2] Bachmann H., Transfinite Zahlen. Zweite, neubearbeitete Auflage, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 1, Springer-Verlag, Berlin-New York, 1967.
[3] Berline Ch., Lascar D., Superstable groups, Stability in model theory (Trento, 1984), Ann. Pure Appl. Logic 30 (1986), 1-43. · Zbl 0599.03034
[4] Blass A., Gurevich Y., Program termination and well partial orderings, ACM Trans. Comput. Log. 9 (2008), Art. 18, 26 pp. · Zbl 1367.68061
[5] Brookfield G., The length of Noetherian polynomial rings, Comm. Algebra 31 (2003), 5591-5607. · Zbl 1039.16018
[6] Carruth P.W., Arithmetic of ordinals with applications to the theory of ordered Abelian groups, Bull. Amer. Math. Soc. 48 (1942), 262-271. · Zbl 0061.09308
[7] Chatyrko V.A., Ordinal products of topological spaces, Fund. Math. 144 (1994), 95-117. · Zbl 0809.54027
[8] Conway J.H., On numbers and games, London Mathematical Society Monographs, No. 6, Academic Press, London-New York, 1976. · Zbl 0334.00004
[9] Ehrlich P., The rise of non-Archimedean mathematics and the roots of a misconception. I: The emergence of non-Archimedean systems of magnitudes, Arch. Hist. Exact Sci. 60 (2006), 1-121. · Zbl 1086.01024
[10] Harris D., Semirings and T1 compactifications. I, Trans. Amer. Math. Soc. 188 (1974), 241-258. · Zbl 0286.54006
[11] Harzheim E., Ordered sets, Advances in Mathematics 7, Springer, New York, 2005. · Zbl 1072.06001
[12] Hausdorff F., Mengenlehre, Dritte Auflage, Walter de Gruyter & Co., Berlin-Leipzig, 1935.
[13] de Jongh D.H.J., Parikh R., Well-partial orderings and hierarchies, Nederl. Akad. Wetensch. Proc. Ser. A 80 = Indag. Math. 39 (1977), 195-207. · Zbl 0435.06004
[14] Lipparini P., An infinite natural sum, MLQ Math. Log. Q. 62 (2016), 249-257. · Zbl 1403.03082
[15] Lipparini P., Some transfinite natural sums, Preprint 2016, arXiv:1509.04078v2. · Zbl 1403.03082
[16] Lipparini P., Some transfinite natural products, in preparation.
[17] Matsuzaka K., On the definition of the product of ordinal numbers, Sûgaku 8 (1956/1957), 95-96 (in Japanese).
[18] Milner E.C., Basic wqo- and bqo-theory, in: I. Rival, Graphs and order. The role of graphs in the theory of ordered sets and its applications. Proceedings of the NATO Advanced Study Institute held in Banff, Alta., May 18-31, 1984, NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., 147, D. Reidel Publishing Co., Dordrecht, 1985, pp. 487-502.
[19] Sierpinski W., Sur les séries infinies de nombres ordinaux, Fund. Math. 36 (1949), 248-253. · Zbl 0039.27902
[20] Sierpinski W., Sur les produits infinis de nombres ordinaux, Soc. Sci. Lett. Varsovie. C. R. Cl. III. Sci. Math. Phys. 43 (1950), 20-24. · Zbl 0045.33002
[21] Sierpinski W., Cardinal and ordinal numbers, Second revised edition, Monografie Matematyczne Vol. 34, Panstwowe Wydawnictwo Naukowe, Warsaw, 1965. · Zbl 0131.24801
[22] Simpson S.G., Ordinal numbers and the Hilbert basis theorem, J. Symbolic Logic 53 (1988), 961-974. · Zbl 0661.03046
[23] Toulmin G.H., Shuffling ordinals and transfinite dimension, Proc. London Math. Soc. 4 (1954), 177-195. · Zbl 0055.41406
[24] Väänänen J., Wang T., An Ehrenfeucht-Fraïssé game for L_{w1w}, MLQ Math. Log. Q. 59 (2013), 357-370.
[25] Wang T., An Ehrenfeucht-Fraïssé game for L_{w1w}, MSc Thesis, Universiteit van Amsterdam, 2012.
[26] Wolk E.S., Partially well ordered sets and partial ordinals, Fund. Math. 60 (1967) 175-186. · Zbl 0153.02601
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.