×

An improved delay-dependent criterion for stability of uncertain neutral systems with mixed time delays. (English) Zbl 1279.34086

Summary: This paper addresses the asymptotic stability problem for a class of uncertain neutral systems with discrete and distributed time delays. By considering a new Lyapunov functional and employing the linear matrix inequality technique, less conservative stability criteria are derived to compute the maximum allowable upper bound for the delay-range within which the considered uncertain neutral system is asymptotically stable. The obtained stability conditions are formulated in terms of linear matrix inequalities (LMIs) that can be easily solved by using the MATLAB-LMI toolbox package. The effectiveness of the proposed stability criterion is demonstrated through a numerical example and the results are compared with some existing works to show the less conservatism of the obtained results.

MSC:

34K20 Stability theory of functional-differential equations
34K40 Neutral functional-differential equations

Software:

Matlab; LMI toolbox
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] R. Sakthivel, K. Mathiyalagan, and S. Marshal Anthoni, International Journal of Control 85, 373 (2012). · Zbl 1256.93081 · doi:10.1080/00207179.2011.653832
[2] V. N. Phat, Y. Khongtham, and K. Ratchagit, Linear Algebra and its Applications 436, 243 (2012). · Zbl 1230.93076 · doi:10.1016/j.laa.2011.07.016
[3] P. Balasubramaniam, R. Krishnasamy, and R. Rakkiyappan, Applied Mathematical Modelling 36, 2253 (2012). · Zbl 1243.34105 · doi:10.1016/j.apm.2011.08.024
[4] W. H. Chen and W. X. Zheng, Automatica 43, 95 (2007). · Zbl 1140.93466 · doi:10.1016/j.automatica.2006.07.019
[5] Z. Feng and J. Lam, International Journal of Robust and Nonlinear Control 22, 676 (2012). · Zbl 1273.93140 · doi:10.1002/rnc.1724
[6] Q. L. Han, Automatica 40, 1791 (2004). · Zbl 1075.93032 · doi:10.1016/j.automatica.2004.05.002
[7] Y. He, M. Wu, J. H. She, and G. P. Liu, Systems and Control Letters, 51, 57 (2004). · Zbl 1157.93467 · doi:10.1016/S0167-6911(03)00207-X
[8] S. Lakshmanan, T. Senthilkumar, and P. Balasubramaniam, Applied Mathematical Modelling 35, 5355 (2011). · Zbl 1228.93091 · doi:10.1016/j.apm.2011.04.043
[9] O. M. Kwon, S.M. Lee, and J. H. Park, Journal of Optimization Theory and Applications 149, 630 (2011). · Zbl 1221.93211 · doi:10.1007/s10957-011-9795-5
[10] O. M. Kwon, J. H. Park and S. M. Lee, Journal of Optimization Theory and Applications 145, 343 (2010). · Zbl 1201.93107 · doi:10.1007/s10957-009-9637-x
[11] F. Qiu, B. Cui, and Y. Ji, Nonlinear Analysis: RealWorld Applications 11, 895 (2010). · Zbl 1187.37124 · doi:10.1016/j.nonrwa.2009.01.032
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.