×

The Kempf-Ness theorem and invariant theory for real reductive representations. (English) Zbl 1490.14081

The paper under review provides new proofs of two well-known results in the invariant theory of real reductive representations, namely appropriate analogues of the Kempf-Ness Theorem and the Hilbert-Mumford criterion.
As originally formulated, the Kempf-Ness theorem [G. Kempf and L. Ness, Lect. Notes Math. 732, 233–243 (1979; Zbl 0407.22012)] tells us that a vector in a linear representation of a complex reductive group is stable if and only if an invariant norm function achieves its minimum value on that orbit. The most important consequence of this is the following, which is sometimes itself called the Kempf-Ness theorem: when a complex reductive group \(G\) acting linearly on a smooth complex projective variety \(X \subset \mathbb{P}^n\), the geometric invariant theory quotient of \(X\) by the action of \(G\) is homeomorphic to the symplectic reduction of \(X\) by the maximal compact subgroup \(K \leq G\).
A related result is the Hilbert-Mumford criterion in Geometric Invariant Theory, the original version of which applies to any reductive group \(G\) acting linearly on a projective variety over an algebraically closed field of characteristic zero. This result states that stability (respectively, semistability) of a point \(x\in X\), is equivalently stability (resp. semistability) with respect to all 1-parameter subgroups \(\lambda : \mathbb{G}_m \rightarrow G\). This allows one to formulate stability and semi-stability as purely combinatorial notions, involving the convex hulls of subsets of the weights appearing in the representation. This theorem is crucial to the utility of GIT in practice.
The original proof of the Hilbert-Mumford criterion makes use of Iwahori’s theorem on double cosets of semisimple linear algebraic groups, and from this deduces a statement to the effect that any point in the closure of a \(G\)-orbit can be reached by taking a limit under an appropriate 1-parameter subgroup. It is this statement that goes by the name ‘Hilbert-Mumford criterion’ in the real reductive setting. Instead of Iwahori’s theorem, this paper uses the slice theorem of P. Heinzner and H. Stötzel [in: Global aspects of complex geometry. Berlin: Springer. 211–226 (2006; Zbl 1117.32017)], itself a translation of a well-known GIT result into the real reductive setting.
The version of the Kempf-Ness theorem proved in this paper is for representations of real reductive groups, of which several different definitions exist in the literature. This theorem was originally proved by R. W. Richardson and P. J. Slodowy [J. Lond. Math. Soc., II. Ser. 42, No. 3, 409–429 (1990; Zbl 0675.14020)] around 1990, and since has been re-proved by C. Böhm and R. A. Lafuente [“Real geometric invariant theory”, Preprint, arXiv:1701.00643] using less algebraic methods. The proof in this paper makes use of the notion of a Kempf-Ness function and introduced by the author in the joint paper [L. Biliotti and M. Zedda, Ann. Mat. Pura Appl. (4) 196, No. 6, 2185–2211 (2017; Zbl 1397.14061)] with Zedda, and results from the author’s prior work, especially [L. Biliotti and M. Zedda, Ann. Mat. Pura Appl. (4) 196, No. 6, 2185–2211 (2017; Zbl 1397.14061); L. Biliotti, J. Geom. Phys. 151, Article ID 103621, 15 p. (2020; Zbl 1443.22015)]. The results and proofs of the first half of the paper are mostly taken from these papers.

MSC:

14L24 Geometric invariant theory
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Biliotti, L.; Ghigi, A.; Heinzner, P., Polar orbitopes, Commun. Anal. Geom., 21, 3, 579-606 (2013) · Zbl 1279.22017 · doi:10.4310/CAG.2013.v21.n3.a5
[2] Biliotti, L.; Ghigi, A.; Heinzner, P., Invariant convex sets in polar representations, Isr. J. Math., 213, 423-441 (2016) · Zbl 1351.52002 · doi:10.1007/s11856-016-1325-6
[3] Biliotti, L.; Ghigi, A., Stability of measures on Kähler manifolds, Adv. Math., 317, 1108-1150 (2017) · Zbl 1355.53072 · doi:10.1016/j.aim.2016.11.033
[4] Biliotti, L.; Zedda, M., Stability with respect to actions of real reductive Lie groups, Ann. Mat. Pura Appl. (4), 196, 6, 2185-2211 (2017) · Zbl 1397.14061 · doi:10.1007/s10231-017-0660-5
[5] Biliotti, L.; Ghigi, A., Remarks on the abelian convexity theorem, Proc. Am. Math. Soc., 146, 12, 5409-5419 (2018) · Zbl 1411.53073 · doi:10.1090/proc/14188
[6] Biliotti, L.; Raffero, A., Convexity theorems for the gradient map for the gradient map on probability measures, Complex Manifolds, 5, 133-145 (2018) · Zbl 1404.46024 · doi:10.1515/coma-2018-0008
[7] Biliotti, L.: Convexity properties of gradient maps associated to real reductive representations. arXiv preprint arXiv:1905.01915 · Zbl 1443.22015
[8] Birkes, D., Orbits of linear algebraic groups, Ann. Math., 2, 93, 459-475 (1971) · Zbl 0198.35001 · doi:10.2307/1970884
[9] Böhm, C., Lafuente R.A.: Real geometric invariant theory. arXiv preprint arXiv:1701.00643 · Zbl 1423.53079
[10] Borel, A., Harish-Chandra, Arithmetic subgroups of algebraic groups, Ann. Math., 2, 75, 485-535 (1962) · Zbl 0107.14804 · doi:10.2307/1970210
[11] Borel, A., Linear Algebraic Groups, Graduate Texts in Mathematics, 288 (1991), New York: Springer, New York · Zbl 0726.20030 · doi:10.1007/978-1-4612-0941-6
[12] Borel, A.; Tits, J., Groupes réductifs, Inst. Hautes Études Sci. Publ. Math., 27, 55-150 (1965) · Zbl 0145.17402 · doi:10.1007/BF02684375
[13] Borel, A.: Lie groups and linear algebraic groups I. Complex and Real groups. In: Ji, L. (ed.) AMS IP Studies in Advanced Mathematics, vol. 37, pp. 1-49. American Mathematical Society, Providence (2006) · Zbl 1133.20001
[14] Borel, A., Ji, L.: Compactifications of symmetric and locally symmetric spaces. Mathematics: Theory & Applications. Birkhäuser Boston Inc., Boston, MA, pp. xvi+479 (2006) · Zbl 1100.22001
[15] Eberlein, P., Geometry of Nonpositively Curved Manifolds, Chicago Lectures in Mathematics (1996), Chicago: University of Chicago Press, Chicago · Zbl 0883.53003
[16] Eberlein, P., Jablonski, M.: Closed orbit of semi-simple Lie group actions and the real Hilbert-Munford functions. In: New Developments in Lie Theory and Geometry, Contemporary Mathematics, pp. 283-321. American Mathematical Society, Providence (2009) · Zbl 1185.14037
[17] Harish-Chandra, Harmonic analysis on real reductive groups I. The theory of the constant term, J. Funct. Anal., 19, 104-204 (1975) · Zbl 0315.43002 · doi:10.1016/0022-1236(75)90034-8
[18] Heinzner, P.; Stötzel, H., Semistable points with respect to real forms, Math. Ann., 338, 1-9 (2007) · Zbl 1129.32015 · doi:10.1007/s00208-006-0063-1
[19] Heinzner, P.; Schwarz, GW, Cartan decomposition of the moment map, Math. Ann., 337, 1, 197-232 (2007) · Zbl 1110.32008 · doi:10.1007/s00208-006-0032-8
[20] Heinzner, P.; Schwarz, GW; Stötzel, H., Stratifications with respect to actions of real reductive groups, Compos. Math., 144, 1, 163-185 (2008) · Zbl 1133.32009 · doi:10.1112/S0010437X07003259
[21] Heinzner, P., Stötzel, H.: Critical points of the square of the momentum map. In: Catanese, F., Esnault, H., Huckleberry, A.T., Hulek, K., Peternell, T. (eds.) Global Aspects of Complex Geometry, pp. 211-226. Springer, Berlin (2006) · Zbl 1117.32017
[22] Heinzner, P.; Schützdeller, P., Convexity properties of gradient maps, Adv. Math., 225, 3, 1119-1133 (2010) · Zbl 1198.53095 · doi:10.1016/j.aim.2010.03.021
[23] Helgason, S., Differential Geometry, Lie Groups and Symmetric Spaces, Graduate Studies in Mathematics (2001), Providence: American Mathematical Society, Providence · Zbl 0993.53002
[24] Kapovich, M.; Leeb, B.; Millson, J., Convex functions on symmetric spaces, side lengths of polygons and the stability inequalities for weighted configurations at infinity, J. Differ. Geom., 81, 2, 297-354 (2009) · Zbl 1167.53044 · doi:10.4310/jdg/1231856263
[25] Kempf, G., Ness, L.: The length of vectors in representation spaces. In: Algebraic Geometry (Proceedings of Summer Meeting, University of Copenhagen, Copenhagen, 1978), Volume 732 of Lecture Notes in Mathematics, pp. 233-243. Springer, Berlin (1979) · Zbl 0407.22012
[26] Kirwan, FC, Cohomology of Quotients in Symplectic and Algebraic Geometry, Volume of 31 Mathematical Notes (1984), Princeton: Princeton University Press, Princeton · Zbl 0553.14020
[27] Knapp, AW, Lie Groups Beyond an Introduction, Volume 140 of Progress in Mathematics (2002), Boston: Birkhäuser Boston Inc., Boston · Zbl 1075.22501
[28] Lauret, J., On the moment map for the variety of Lie algebras, J. Funct. Anal., 202, 2, 392-423 (2003) · Zbl 1036.17010 · doi:10.1016/S0022-1236(02)00108-8
[29] Lauret, J., A canonical compatible metric for geometric structures on nilmanifolds, Ann. Glob. Anal. Geom., 30, 2, 107-138 (2006) · Zbl 1102.53021 · doi:10.1007/s10455-006-9015-y
[30] Luna, D., Slices étale, Bull. Soc. Math. France, 33, 81-105 (1973) · Zbl 0286.14014
[31] Luna, D., Sur certaines opérations différentiables des groupes de Lie, Am. J. Math., 97, 172-181 (1975) · Zbl 0334.57022 · doi:10.2307/2373666
[32] Mostow, GD, Some new decomposition theorems for semisimple Lie group, Mem. Am. Math. Soc., 14, 31-54 (1955) · Zbl 0064.25901
[33] Mostow, GD, Self-adjoint groups, Ann. Math. (2), 62, 44-55 (1955) · Zbl 0065.01404 · doi:10.2307/2007099
[34] Mumford, D.; Fogarty, J.; Kirwan, F., Geometric Invariant Theory, Volume 34 of Ergebnisse der Mathematik und ihrer Grenzgebiete (2) (1994), Berlin: Springer, Berlin · Zbl 0797.14004
[35] Mundet i. Riera, I., A Hitchin-Kobayashi correspondence for Kähler fibrations, J. Reine Angew. Math., 528, 41-80 (2000) · Zbl 1002.53057
[36] Mundet i. Riera, I., A Hilbert-Mumford criterion for polystability in Kaehler geometry, Trans. Am. Math. Soc., 362, 10, 5169-5187 (2010) · Zbl 1201.53086 · doi:10.1090/S0002-9947-2010-04831-7
[37] Mundet i Riera, I.: Maximal weights in Kähler geometry: flag manifolds and Tits distance. (With an appendix by A.H.W. Schmitt. Contemporary Mathematics, vol. 522 “Vector bundles and complex geometry”), pp. 113-129. American Mathematical Society, Providence (2010) · Zbl 1217.53050
[38] Ness, L., Stratification of the null cone via the moment map, Am. J. Math., 106, 1281-1329 (1984) · Zbl 0604.14006 · doi:10.2307/2374395
[39] Richardson, RW; Slodowoy, PJ, Minumun vectors for real reductive algebraic groups, J. Lond. Math. Soc. (2), 42, 409-429 (1990) · Zbl 0675.14020 · doi:10.1112/jlms/s2-42.3.409
[40] Schwartz, G.: The topology of algebraic quotients. In: Kraft, H., Petrie, T., Schwartz, G. (eds.) Topological Methods in Algebraic Transformation Groups (New Brunswick, NJ, 1988), Progress in Mathematics, pp. 131-151. Birkhäuser, Boston (1989) · Zbl 0708.14034
[41] Sjamaar, R., Holomorphic slices, symplectic reduction and multiplicity representations, Ann. Math. (2), 141, 87-129 (1995) · Zbl 0827.32030 · doi:10.2307/2118628
[42] Teleman, A., Symplectic stability, analytic stability in non-algebraic complex geometry, Int. J. Math., 15, 2, 183-209 (2004) · Zbl 1089.53058 · doi:10.1142/S0129167X04002223
[43] Wallach, NR, Real Reductive Groups I, Pure and Applied Mathematics, 132 (1988), Boston: Academic Press Inc., Boston · Zbl 0666.22002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.