×

Coinfection, altered vector infectivity, and antibody-dependent enhancement: the dengue-zika interplay. (English) Zbl 1432.92098

Summary: Although dengue and zika cocirculation has increased within the past 5 years, very little is known about its epidemiological consequences. To investigate the effect of dengue and zika cocirculation on the spread of both pathogens, we create a deterministic dengue and zika coinfection model, the first to incorporate altered infectivity of mosquitoes (due to coinfection). The model also addresses increased infectivity due to antibody-dependent enhancement (ADE) within the human population. Central to our analysis is the derivation and interpretation of the basic reproductive number and invasion reproductive number of both pathogens. In addition, we investigate how model parameters impact the persistence of each disease. Our results identify threshold conditions under which one disease facilitates the spread of the other and show that ADE has a greater impact on disease persistence than altered vector infectivity. This work highlights the importance of ADE and illustrates that while the endemic presence of dengue facilitates the spread of zika, it is possible for high zika prevalence to prevent the establishment of dengue.

MSC:

92D30 Epidemiology
34C60 Qualitative investigation and simulation of ordinary differential equation models
PDFBibTeX XMLCite
Full Text: DOI Link

References:

[1] Abrao, E.; da Fonseca, B., Infection of mosquito cells (c6/36) by dengue-2 virus interferes with subsequent infection by yellow fever virus, Vector-Borne Zoonotic Dis, 16, 2, 124-130 (2016) · doi:10.1089/vbz.2015.1804
[2] Andraud, M.; Hens, N.; Marais, C.; Beutels, P., Dynamic epidemiological models for dengue transmission: a systematic review of structural approaches, PLoS ONE, 7, 11, e49085 (2012) · doi:10.1371/journal.pone.0049085
[3] Bardina, SV; Bunduc, P.; Tripathi, S.; Duehr, J.; Frere, JJ; Brown, JA; Nachbagauer, R.; Foster, GA; Krysztof, D.; Tortorella, D.; Stramer, SL; García-Sastre, A.; Krammer, F.; Lim, JK, Enhancement of Zika virus pathogenesis by preexisting antiflavivirus immunity, Science, 356, 6334, 175-180 (2017) · doi:10.1126/science.aal4365
[4] Braselton, J.; Bakach, L., A survey of mathematical models of dengue fever, J Comput Sci Syst Biol, 8, 5, 255-267 (2015)
[5] Carrillo-Hernández, M.; Ruiz-Saenz, J.; Villamizar, L.; Gómez-Rangel, S.; Martínez-Gutierrez, M., Co-circulation and simultaneous co-infection of dengue, chikungunya, and Zika viruses in patients with febrile syndrome at the Colombian-Venezuelan border, BMC Infect Dis, 18, 1, 61 (2018) · doi:10.1186/s12879-018-2976-1
[6] Charles A, Christofferson R (2016) Utility of a dengue-derived monoclonal antibody to enhance Zika infection in vitro. PLoS Currents, 8:ecurrents.outbreaks.4ab8bc87c945eb41cd8a49e127082620
[7] Chaves, B.; Orfano, A.; Nogueira, P.; Rodrigues, N.; Campolina, T.; Nacif-Pimenta, R.; Pires, A.; Júnior, A.; Paz, A.; Vaz, E., Coinfection with Zika virus (ZIKV) and dengue virus results in preferential ZIKV transmission by vector bite to vertebrate host, J Infect Dis, 218, 4, 563-571 (2018) · doi:10.1093/infdis/jiy196
[8] Crawford, B.; Kribs, C., The impact of vaccination and coinfection on HPV and cervical cancer, Discrete Contin Dyn Syst Ser B, 12, 2, 279-304 (2009) · Zbl 1176.37027
[9] Dejnirattisai, W.; Supasa, P.; Wongwiwat, W.; Rouvinski, A.; Barba-Spaeth, G.; Duangchinda, T.; Sakuntabhai, A.; Cao-Lormeau, V-M; Malasit, P.; Rey, F., Dengue virus sero-cross-reactivity drives antibody-dependent enhancement of infection with Zika virus, Nat Immunol, 17, 9, 1102-1108 (2016) · doi:10.1038/ni.3515
[10] Dupont-Rouzeyrol, M.; O’Connor, O.; Calvez, E.; Daures, M.; John, M.; Grangeon, J-P; Gourinat, A-C, Co-infection with Zika and dengue viruses in 2 patients, New Caledonia, 2014, Emerg Infect Dis, 21, 2, 381-382 (2015) · doi:10.3201/eid2102.141553
[11] Durbin, A., Dengue antibody and Zika: friend or foe?, Trends Immunol, 37, 10, 635-636 (2016) · doi:10.1016/j.it.2016.08.006
[12] Gao, D.; Lou, Y.; He, D.; Porco, T.; Kuang, Y.; Chowell, G.; Ruan, S., Prevention and control of Zika as a mosquito-borne and sexually transmitted disease: a mathematical modeling analysis, Sci Rep, 6, 28070 (2016) · doi:10.1038/srep28070
[13] George, J.; Valiant, WG; Mattapallil, MJ; Walker, M.; Huang, YS; Vanlandingham, DL; Misamore, J.; Greenhouse, J.; Weiss, DE; Verthelyi, D.; Higgs, S.; Andersen, H.; Lewis, MG; Mattapallil, JJ, Prior exposure to Zika virus significantly enhances peak dengue-2 viremia in rhesus macaques, Sci Rep, 7, 10498 (2017) · doi:10.1038/s41598-017-10901-1
[14] Isea, R.; Lonngren, K., A preliminary mathematical model for the dynamic transmission of dengue, chikungunya and Zika, Am J Mod Phys Appl, 3, 11-15 (2016)
[15] Kawiecki, A.; Christofferson, R., Zika virus-induced antibody response enhances dengue virus serotype 2 replication in vitro, J Infect Dis, 214, 9, 1357-1360 (2016) · doi:10.1093/infdis/jiw377
[16] Kumar, K.; Singh, P.; Tomar, J.; Baijal, S., Dengue: epidemiology, prevention and pressing need for vaccine development, Asian Pac J Trop Med, 3, 12, 997-1000 (2010) · doi:10.1016/S1995-7645(11)60017-5
[17] Lovine, N.; Lednicky, J.; Cherabuddi, K.; Crooke, H.; White, S.; Loeb, J.; Cella, E.; Ciccozzi, M.; Salemi, M.; Morris, J. Jr, Coinfection with Zika and dengue-2 viruses in a traveler returning from Haiti, 2016: clinical presentation and genetic analysis, Clin Infect Dis, 64, 1, 72-75 (2017) · doi:10.1093/cid/ciw667
[18] Magalhaes, T.; Robison, A.; Young, M.; Black, W.; Foy, B.; Ebel, G.; Rückert, C., Sequential infection of Aedes aegypti mosquitoes with chikungunya virus and Zika virus enhances early Zika virus transmission, Insects, 9, 4, 177 (2018) · doi:10.3390/insects9040177
[19] Manore, C.; Hickmann, K.; Xu, S.; Wearing, H.; Hyman, J., Comparing dengue and chikungunya emergence and endemic transmission in A. aegypti and A. albopictus, J Theor Biol, 356, 174-191 (2014) · Zbl 1412.92292 · doi:10.1016/j.jtbi.2014.04.033
[20] Martcheva, M., A non-autonomous multi-strain SIS epidemic model, J Biol Dyn, 3, 2-3, 235-251 (2009) · Zbl 1342.92258 · doi:10.1080/17513750802638712
[21] Mitchell, C.; Kribs, C., Invasion reproductive numbers for periodic epidemic systems, Infect Dis Model, 4, 124-141 (2019)
[22] Moraes, G.; de Fátima Duarte, E.; Duarte, E., Determinants of mortality from severe dengue in Brazil: a population-based case-control study, Am J Trop Med Hyg, 88, 4, 670-676 (2013) · doi:10.4269/ajtmh.11-0774
[23] Mustafa, M.; Rasotgi, V.; Jain, S.; Gupta, V., Discovery of fifth serotype of dengue virus (DENV-5): a new public health dilemma in dengue control, Med J Armed Forces India, 71, 1, 67-70 (2015) · doi:10.1016/j.mjafi.2014.09.011
[24] Okuneye, K.; Velasco-Hernandez, J.; Gumel, A., The “unholy” chikungunya-dengue-Zika trinity: a theoretical analysis, J Biol Syst, 25, 4, 545-585 (2017) · Zbl 1397.92668 · doi:10.1142/S0218339017400046
[25] Olawoyin, O.; Kribs, C., Effects of multiple transmission pathways on Zika dynamics, Infect Dis Model, 3, 331-344 (2018)
[26] PAHO (2016) Provisional remarks on Zika virus infection in pregnant women: document for health care professionals. http://iris.paho.org/xmlui/handle/123456789/18600. Accessed 18 Oct 2018
[27] Paul, L.; Carlin, E.; Jenkins, M.; Tan, A.; Barcellona, C.; Nicholson, C.; Michael, S.; Isern, S., Dengue virus antibodies enhance Zika virus infection, Clin Transl Immunol, 5, 12, e117 (2016) · doi:10.1038/cti.2016.72
[28] Porco, T.; Blower, S., Designing HIV vaccination policies: subtypes and cross-immunity, Interfaces, 28, 3, 167-190 (1998) · doi:10.1287/inte.28.3.167
[29] Rückert, C.; Weger-Lucarelli, J.; Garcia-Luna, S.; Young, M.; Byas, A.; Murrieta, R.; Fauver, J.; Ebel, G., Impact of simultaneous exposure to arboviruses on infection and transmission by Aedes aegypti mosquitoes, Nat Commun, 8, 15412 (2017) · doi:10.1038/ncomms15412
[30] Shutt, D.; Manore, C.; Pankavich, S.; Porter, A.; Del Valle, S., Estimating the reproductive number, total outbreak size, and reporting rates for Zika epidemics in South and Central America, Epidemics, 21, 63-79 (2017) · doi:10.1016/j.epidem.2017.06.005
[31] Stettler, K.; Beltramello, M.; Espinosa, D.; Graham, V.; Cassotta, A.; Bianchi, S.; Vanzetta, F.; Minola, A.; Jaconi, S.; Mele, F., Specificity, cross-reactivity and function of antibodies elicited by Zika virus infection, Science, 353, 6301, 823-826 (2016) · doi:10.1126/science.aaf8505
[32] Tang, B.; Xiao, Y.; Wu, J., Implication of vaccination against dengue for zika outbreak, Sci Rep, 6, 35623 (2016) · doi:10.1038/srep35623
[33] van den Driessche, P.; Watmough, J., Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math Biosci, 180, 1-2, 29-48 (2002) · Zbl 1015.92036 · doi:10.1016/S0025-5564(02)00108-6
[34] Waggoner, J.; Gresh, L.; Vargas, M.; Ballesteros, G.; Tellez, Y.; Soda, K.; Sahoo, M.; Nuñez, A.; Balmaseda, A.; Harris, E., Viremia and clinical presentation in Nicaraguan patients infected with Zika virus, chikungunya virus, and dengue virus, Clin Infect Dis, 63, 12, 1584-1590 (2016) · doi:10.1093/cid/ciw589
[35] Wang, L.; Zhao, H., Dynamics analysis of a Zika-dengue co-infection model with dengue vaccine and antibody-dependent enhancement, Phys A Stat Mech Appl, 522, 248-273 (2019) · Zbl 07561951 · doi:10.1016/j.physa.2019.01.099
[36] Whitehead, S.; Blaney, J.; Durbin, A.; Murphy, B., Prospects for a dengue virus vaccine, Nat Rev Microbiol, 5, 7, 518 (2007) · doi:10.1038/nrmicro1690
[37] Wiratsudakul, A.; Suparit, P.; Modchang, C., Dynamics of Zika virus outbreaks: an overview of mathematical modeling approaches, PeerJ, 6, e4526 (2018) · doi:10.7717/peerj.4526
[38] Global strategy for dengue prevention and control 2012-2020 (2012), Geneva: WHO Library Cataloguing-in-Publication Data, Geneva
[39] Yang, H.; Macoris, M.; Galvani, K.; Andrighetti, M.; Wanderley, D., Assessing the effects of temperature on the population of Aedes aegypti, the vector of dengue, Epidemiol Infect, 137, 8, 1188-1202 (2009) · doi:10.1017/S0950268809002040
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.