×

On the elliptic Stark conjecture at primes of multiplicative reduction. (English) Zbl 1471.11192

Summary: In [Forum Math. Pi 3, Paper No. e8, 95 p. (2015; Zbl 1392.11034)], H. Darmon et al. formulated a \(p\)-adic elliptic Stark conjecture for the twist of an elliptic curve \(E/\mathbb{Q}\) by the self-dual tensor product \(\rho_1\otimes\rho_2\) of two odd and two-dimensional Artin representations. These authors provided abundant numerical evidence and proved the conjecture in the special setting where \(p\) is a prime of good reduction for \(E\) and \(\rho_1\) and \(\rho_2\) are induced from finite-order characters \(\psi_g, \psi_h\) of the same imaginary quadratic field. The key step in their proof is a factorization of one-variable \(p\)-adic \(L\)-functions, where \(\psi_g\) varies in a \(p\)-adic family of Hecke characters.
The main goal of this article is to prove a new case of the conjecture, placing ourselves in the setting where \(p\) is a prime of multiplicative reduction for \(E\). In order to achieve our theorem, we need to work with {\em two-variable} \(p\)-adic \(L\)-functions, where the weight \(2\) cusp form associated with \(E\) also moves independently along a Hida family. Our main result then follows from a factorization of \(p\)-adic \(L\)-series extending to two variables the one obtained in [loc. cit.]. On the way we also generalize to our setting the results obtained in [the authors, “Stark points and \(p\)-adic iterated integrals”, Ramanujan J. (to appear)].

MSC:

11G16 Elliptic and modular units
11G40 \(L\)-functions of varieties over global fields; Birch-Swinnerton-Dyer conjecture
11F11 Holomorphic modular forms of integral weight

Citations:

Zbl 1392.11034
PDFBibTeX XMLCite
Full Text: DOI Link

References:

[1] A. AGASHE, K. RIBET,ANDW.A. STEIN,The Manin constant, Pure Appl. Math. Q. 2 (2006), no. 2, Special Issue: In honor of John H. Coates, 617-636.http://dx.doi.org/ 10.4310/PAMQ.2006.v2.n2.a11.MR2251484. · Zbl 1109.11032
[2] J. BELLA¨ICHE ANDM. DIMITROV,On the eigencurve at classical weight 1 points, Duke Math. J. 165 (2016), no. 2, 245-266, available athttp://math.univ-lille1.fr/  mladen/.http://dx.doi.org/10.1215/00127094-3165755.MR3457673. · Zbl 1404.11047
[3] M. BERTOLINI ANDH. DARMON,Kato’s Euler system and rational points on elliptic curves I: Ap-adic Beilinson formula, Israel J. Math. 199 (2014), no. 1, 163-188.http://dx.doi. org/10.1007/s11856-013-0047-2.MR3219532. · Zbl 1317.11071
[4] ,The rationality of Stark-Heegner points over genus fields of real quadratic fields, Ann. of Math. (2) 170 (2009), no. 1, 343-370.http://dx.doi.org/10.4007/annals.2009. 170.343.MR2521118. · Zbl 1203.11045
[5] M. BERTOLINI, H. DARMON,ANDV. ROTGER,Beilinson-Flach elements and Euler systems I: Syntomic regulators andp-adic RankinL-series, J. Algebraic Geom. 24 (2015), no. 2, 355-378.http://dx.doi.org/10.1090/S1056-3911-2014-00670-6.MR3311587. · Zbl 1325.14034
[6] M. BERTOLINI, H. DARMON,ANDK. PRASANNA,Generalized Heegner cycles andpadic RankinL-series, Duke Math. J. 162 (2013), no. 6, 1033-1148, With an appendix by Brian Conrad.http://dx.doi.org/10.1215/00127094-2142056.MR3053566. · Zbl 1302.11043
[7] F. CASTELLA‘,On thep-adic variation of Heegner points, Journal de l’Inst. Math. de Jussieu, to appear. · Zbl 1454.11108
[8] ,On the exceptional specializations of big Heegner points, J. Inst. Math. Jussieu 17 (2018), no. 1, 207-240.http://dx.doi.org/10.1017/S1474748015000444. · Zbl 1390.11094
[9] D. CASAZZA ANDV. ROTGER,Stark points andp-adic iterated integrals, Ramanujan Journal of Math., to appear.
[10] H. DARMON,Integration onHp× Hand arithmetic applications, Ann. of Math. (2) 154 (2001), no. 3, 589-639.http://dx.doi.org/10.2307/3062142.MR1884617. · Zbl 1035.11027
[11] H. DARMON, A. LAUDER,ANDV. ROTGER,Stark points andp-adic iterated integrals attached to modular forms of weight one, Forum Math. Pi 3 (2015), e8, 95.http://dx.doi. org/10.1017/fmp.2015.7.MR3456180. · Zbl 1392.11034
[12] H. DARMON ANDV. ROTGER,Diagonal cycles and Euler systems I: Ap-adic Gross-Zagier formula, Ann. Sci. ´Ec. Norm. Sup´er. (4) 47 (2014), no. 4, 779-832 (English, with English and French summaries).http://dx.doi.org/10.24033/asens.2227.MR3250064. · Zbl 1356.11039
[13] ,Diagonal cycles and Euler systems II: The Birch and Swinnerton-Dyer conjecture for Hasse-Weil-ArtinL-functions, J. Amer. Math. Soc. 30 (2017), no. 3, 601-672.http://dx. doi.org/10.1090/jams/861.MR3630084. · Zbl 1397.11090
[14] ,A Kolyvagin theorem in rank 2, in progress.
[15] M. DIMITROV ANDE. GHATE,On classical weight one forms in Hida families, J. Th´eor. Nombres Bordeaux 24 (2012), no. 3, 669-690 (English, with English and French summaries).MR3010634. · Zbl 1271.11060
[16] P.B. GARRETT,Decomposition of Eisenstein series: Rankin triple products, Ann. of Math. (2) 125(1987), no. 2, 209-235.http://dx.doi.org/10.2307/1971310.MR881269. · Zbl 0625.10020
[17] B.H. GROSS,Heegner points onX0(N), Heegner points and Rankin L-series, Cambridge University Press (Mathematical Sciences Research Institute Publications), 2004, pp. Chapter 5.http://dx.doi.org/10.1017/CBO9780511756375.
[18] H. HIDA,Galois representations intoGL2(ZpJXK)attached to ordinary cusp forms, Invent. Math. 85 (1986), no. 3, 545-613.http://dx.doi.org/10.1007/BF01390329. · Zbl 0612.10021
[19] ,Elementary Theory ofL-functions and Eisenstein Series, London Mathematical Society Student Texts, vol. 26, Cambridge University Press, Cambridge, 1993.http://dx. doi.org/10.1017/CBO9780511623691.MR1216135. · Zbl 0942.11024
[20] B. HOWARD,Variation of Heegner points in Hida families, Invent. Math. 167 (2007), no. 1, 91-128.http://dx.doi.org/10.1007/s00222-006-0007-0.MR2264805. · Zbl 1171.11033
[21] U. JANNSEN,Continuous ´etale cohomology, Math. Ann. 280 (1988), no. 2, 207-245. http://dx.doi.org/10.1007/BF01456052.MR929536. · Zbl 0649.14011
[22] E. KANI,Binary theta series and modular forms with complex multiplication, Int. J. Number Theory 10 (2014), no. 4, 1025-1042.http://dx.doi.org/10.1142/ S1793042114500134.MR3208873. · Zbl 1300.11038
[23] N.M. KATZ,p-adic interpolation of real analytic Eisenstein series, Ann. of Math. (2) 104 (1976), no. 3, 459-571.http://dx.doi.org/10.2307/1970966.MR0506271. · Zbl 0354.14007
[24] ,p-adicL-functions for CM fields, Invent. Math. 49 (1978), no. 3, 199-297. http://dx.doi.org/10.1007/BF01390187.MR513095. · Zbl 0417.12003
[25] W. KOHNEN ANDD. ZAGIER,Modular forms with rational periods, Modular Forms, Durham (1983), Ellis Horwood Ser. Math. Appl.: Statist. Oper. Res., Horwood, Chichester, 1984, pp. 197-249.MR803368. · Zbl 0618.10019
[26] M. LONGO, V. ROTGER,ANDC.DEVERA-PIQUERO,Heegner points on HijikataPizer-Shemanske curves and the Birch and Swinnerton-Dyer conjecture, Publ. Mat. 62 (2018), no. 2, 355-396.http://dx.doi.org/10.5565/PUBLMAT6221803.MR3815284. · Zbl 1405.11075
[27] B. PERRIN-RIOU,FonctionsL p-adiques d’une courbe elliptique et points rationnels, Ann. Inst. Fourier (Grenoble) 43 (1993), no. 4, 945-995 (French, with English and French summaries).MR1252935. · Zbl 0840.11024
[28] D. PRASAD,Trilinear forms for representations ofGL(2)and localε-factors, Compositio Math. 75 (1990), no. 1, 1-46.MR1059954. · Zbl 0731.22013
[29] A. WILES,On ordinaryλ-adic representations associated to modular forms, Invent. Math. 94 (1988), no. 3, 529-573.http://dx.doi.org/10.1007/BF01394275.MR969243. · Zbl 0664.10013
[30] M. WOODBURY,Trilinear forms and subconvexity of the triple productL-function, submitted.
[31] ,On the triple product formula: Real local calculations, submitted. · Zbl 1425.11103
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.