×

Explained variation for recurrent event data. (English) Zbl 1329.62030

Summary: Although there are many suggested measures of explained variation for single-event survival data, there has been little attention to explained variation for recurrent event data. We describe an existing rank-based measure and we investigate a new statistic based on observed and expected event count processes. Both methods can be used for all models. Adjustments for missing data are proposed and demonstrated through simulation to be effective. We compare the population values of the two statistics and illustrate their use in comparing an array of non-nested models for data on recurrent episodes of infant diarrhoea.

MSC:

62-07 Data analysis (statistics) (MSC2010)
62N03 Testing in survival analysis and censored data
62P10 Applications of statistics to biology and medical sciences; meta analysis

Software:

Stata; str2ph; addreg; str2d
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Aalen, A linear regression model for the analysis of life times, Statistics in Medicine 8 pp 907– (1989) · doi:10.1002/sim.4780080803
[2] Aalen, Dynamic analysis of multivariate failure time data, Biometrics 60 pp 764– (2004) · Zbl 1274.62665 · doi:10.1111/j.0006-341X.2004.00227.x
[3] Andersen, Statistical Models Based on Counting Processes (1993) · Zbl 0769.62061 · doi:10.1007/978-1-4612-4348-9
[4] Borgan, Dynamic analysis of recurrent event data with missing observations, with application to infant diarrhoea in Brazil, Scandinavian Journal of Statistics 34 pp 53– (2007) · Zbl 1141.62085 · doi:10.1111/j.1467-9469.2006.00525.x
[5] Cai, Robust prediction of t-year survival with data from multiple studies, Biometrics 67 pp 436– (2011) · Zbl 1217.62162 · doi:10.1111/j.1541-0420.2010.01462.x
[6] Cai, The sensitivity and specificity of markers for event times, Biostatistics 7 pp 182– (2006) · Zbl 1169.62367 · doi:10.1093/biostatistics/kxi047
[7] Chambless, Estimation of time-dependent area under the ROC curve for long-term risk prediction, Statistics in Medicine 25 pp 3474– (2006) · doi:10.1002/sim.2299
[8] Choodari-Oskooei, A simulation study of predictive ability measures in a survival model I: explained variation measures, Statistics in Medicine 31 pp 2627– (2012a) · doi:10.1002/sim.4242
[9] Choodari-Oskooei, A simulation study of predictive ability measures in a survival model II: explained randomness and predictive accuracy, Statistics in Medicine 31 pp 2644– (2012b) · doi:10.1002/sim.5460
[10] Cook, Use and misuse of the receiver operating curve in risk prediction, Circulation 115 pp 928– (2007) · doi:10.1161/CIRCULATIONAHA.106.672402
[11] Cook, Clinically relevant measures of fit? A note of caution, American Journal of Epidemiology 176 pp 488– (2012) · doi:10.1093/aje/kws208
[12] Fosen, Dynamic analysis of recurrent event data using the additive model, Biometrical Journal 48 pp 381– (2006) · doi:10.1002/bimj.200510217
[13] Gerds, Consistent estimation of the expected Brier score in general survival models with right censored event times, Biometrical Journal 48 pp 1029– (2006) · doi:10.1002/bimj.200610301
[14] Gerds, Efron-type measures of prediction error for survival analysis, Biometrics 63 pp 1283– (2007) · Zbl 1136.62073 · doi:10.1111/j.1541-0420.2007.00832.x
[15] Gönen, Concordance probability and discriminatory power in proportional hazards regression, Biometrika 92 pp 965– (2005) · Zbl 1160.62352 · doi:10.1093/biomet/92.4.965
[16] Graf, An investigation on measures of explained variation in survival analysis, Statistician 44 pp 497– (1995) · doi:10.2307/2348898
[17] Graf, Assessment and comparison of prognostic classification schemes for survival data, Statistics in Medicine 18 pp 2529– (1999) · doi:10.1002/(SICI)1097-0258(19990915/30)18:17/18<2529::AID-SIM274>3.0.CO;2-5
[18] Harrell, Evaluating the yield of medical tests, Journal of the American Medical Association 247 pp 2543– (1982) · doi:10.1001/jama.1982.03320430047030
[19] Harrell, Regression modelling strategies for improved prognostic prediction, Statistics in Medicine 3 pp 143– (1984) · doi:10.1002/sim.4780030207
[20] Harrell, Multivariable prognostic models: issues in developing models, evaluating assumptions and adequacy, and measuring and reducing errors, Statistics in Medicine 15 pp 361– (1996) · doi:10.1002/(SICI)1097-0258(19960229)15:4<361::AID-SIM168>3.0.CO;2-4
[21] Heagerty, Time dependent ROC curves for censored survival data and a diagnostic marker, Biometrics 56 pp 337– (2000) · Zbl 1060.62622 · doi:10.1111/j.0006-341X.2000.00337.x
[22] Heagerty, Survival model predictive accuracy and ROC curves, Biometrics 61 pp 92– (2005) · Zbl 1077.62077 · doi:10.1111/j.0006-341X.2005.030814.x
[23] Henderson, Problems and prediction in survival data analysis, Statistics in Medicine 14 pp 161– (1995) · doi:10.1002/sim.4780140208
[24] Henderson, Identification and efficacy of longitudinal markers for survival, Biostatistics 3 pp 33– (2002) · Zbl 1133.62360 · doi:10.1093/biostatistics/3.1.33
[25] Henderson, Lifetime Data: Models in Reliability and Survival Analysis pp 125– (1996) · doi:10.1007/978-1-4757-5654-8_18
[26] Henderson, Accuracy of point predictions in survival analysis, Statistics in Medicine 20 pp 3083– (2001) · doi:10.1002/sim.913
[27] Henderson, Effect of frailty on marginal regression estimates in survival analysis, Journal of the Royal Statistical Society Series B 61 pp 367– (1999) · Zbl 0913.62097 · doi:10.1111/1467-9868.00182
[28] Henderson, A serially correlated gamma frailty model for recurrent events, Biometrika 90 pp 355– (2003) · Zbl 1034.62115 · doi:10.1093/biomet/90.2.355
[29] Huang, Assessing risk prediction models in case-control studies using semi parametric and nonparametric methods, Statistics in Medicine 29 pp 1391– (2010) · doi:10.1002/sim.3876
[30] Huang, Evaluating the predictiveness of a continuous marker, Biometrics 63 pp 1181– (2007) · Zbl 1136.62078 · doi:10.1111/j.1541-0420.2007.00814.x
[31] Kent, Information gain and a general measure of correlation, Biometrika 70 pp 163– (1983) · Zbl 0521.62003 · doi:10.1093/biomet/70.1.163
[32] Kent, Measures of dependence for censored survival data, Biometrika 75 pp 525– (1988) · Zbl 0659.62068 · doi:10.1093/biomet/75.3.525
[33] Kerr, Further insight into the incremental value of new markers: the interpretation of performance measures and the importance of clinical context, American Journal of Epidemiology 176 pp 482– (2012) · doi:10.1093/aje/kws210
[34] Korn, Measures of explained variation for survival data, Statistics in Medicine 9 pp 487– (1990) · doi:10.1002/sim.4780090503
[35] Korn, Explained residual variation, explained risk and goodness of fit, American Statistician 45 pp 201– (1991)
[36] Kullback, On information and sufficiency, Annals of Mathematical Statistics 22 pp 79– (1951) · Zbl 0042.38403 · doi:10.1214/aoms/1177729694
[37] Lawless, Estimation of prediction error for survival models, Statistics in Medicine 29 pp 262– (2010)
[38] Maddala, Limited-Dependent and Qualitative Variables in Econometrics (1983) · Zbl 0527.62098 · doi:10.1017/CBO9780511810176
[39] Maucort-Boulch, On a measure of information gain for regression models in survival analysis, Journal of Applied Statistics 41 pp 2696– (2014) · doi:10.1080/02664763.2014.926596
[40] Moskowitz, Quantifying and comparing the accuracy of binary biomarkers when predicting a failure time outcome, Statistics in Medicine 23 pp 1555– (2004a) · doi:10.1002/sim.1747
[41] Moskowitz, Quantifying and comparing the predictive accuracy of continuous prognostic factors for binary outcomes, Biostatistics 5 pp 113– (2004b) · Zbl 1096.62122 · doi:10.1093/biostatistics/5.1.113
[42] Nagelkerke, A note on a general definition of the coefficient of determination, Biometrika 78 pp 691– (1991) · Zbl 0741.62069 · doi:10.1093/biomet/78.3.691
[43] O’Quigley, Predictive capability of proportional hazards regression, Proceedings of the National Academy of Sciences 91 pp 2310– (1994) · Zbl 0791.62068 · doi:10.1073/pnas.91.6.2310
[44] O’Quigley, Explained randomness in proportional hazards models, Statistics in Medicine 24 pp 479– (2005) · doi:10.1002/sim.1946
[45] Pencina, Overall c as a measure of discrimination in survival analysis: model specific population value and confidence interval estimation, Statistics in Medicine 23 pp 2109– (2004) · doi:10.1002/sim.1802
[46] Pencina, Evaluating the added predictive ability of a new marker: from area under the ROC curve to reclassification and beyond, Statistics in Medicine 27 pp 157– (2008) · doi:10.1002/sim.2929
[47] Pencina, Interpreting incremental value of markers added to risk prediction models, American Journal of Epidemiology 176 pp 473– (2012) · doi:10.1093/aje/kws207
[48] Pepe, Letter regarding article, ’Use and misuse of the receiver operating characteristic curve in risk prediction’, Circulation 116 pp 132– (2007) · doi:10.1161/CIRCULATIONAHA.107.709253
[49] Pepe, Evaluating the ROC performance of markers for future events, Lifetime Data Analysis 14 pp 86– (2008) · Zbl 1169.62385 · doi:10.1007/s10985-007-9073-x
[50] Rosthøj, Explained variation and predictive accuracy in general parametric statistical models: the role of model misspecification, Lifetime Data Analysis 10 pp 461– (2004) · Zbl 1058.62023 · doi:10.1007/s10985-004-4778-6
[51] Royston, Explained variation for survival models, STATA Journal 6 pp 83– (2006)
[52] Royston, A new measure of prognostic separation in survival data, Statistics in Medicine 23 pp 723– (2004) · doi:10.1002/sim.1621
[53] Schemper, The explained variation in proportional hazards regression, Biometrika 77 pp 216– (1990) · Zbl 0691.62094 · doi:10.1093/biomet/77.1.216
[54] Schemper, Predictive accuracy and explained variation in Cox regression, Biometrics 56 pp 249– (2000) · Zbl 1060.62663 · doi:10.1111/j.0006-341X.2000.00249.x
[55] Schemper, A new approach to estimate correlation coefficients in the presence of censoring and proportional hazards, Computational Statistics & Data Analysis 23 pp 467– (1997) · Zbl 0900.62297 · doi:10.1016/S0167-9473(96)00045-X
[56] Schemper, Explained variation in survival analysis, Statistic in Medicine 15 pp 1999– (1996) · doi:10.1002/(SICI)1097-0258(19961015)15:19<1999::AID-SIM353>3.0.CO;2-D
[57] Schmid, A robust alternative to the Schemper-Henderson estimator of prediction error, Biometrics 67 pp 524– (2011) · Zbl 1217.62189 · doi:10.1111/j.1541-0420.2010.01459.x
[58] Schoop, Quantifying the predictive accuracy of time-to-event models in the presence of competing risks, Biometrical Journal 53 pp 88– (2011) · Zbl 1207.62209 · doi:10.1002/bimj.201000073
[59] Schoop, Quantifying the predictive performance of prognostic models for censored survival data with time-dependent covariates, Biometrics 64 pp 603– (2008) · Zbl 1137.62401 · doi:10.1111/j.1541-0420.2007.00889.x
[60] Schoop, Measures of prediction error for survival data with longitudinal covariates, Biometrical Journal 53 pp 275– (2011) · Zbl 1209.62329 · doi:10.1002/bimj.201000145
[61] Stare, A measure of explained variation for event history data, Biometrics 67 pp 750– (2011) · Zbl 1226.62098 · doi:10.1111/j.1541-0420.2010.01526.x
[62] Steyerberg, Assessing the performance of prediction models: a framework for traditional and novel measures, Epidemiology 21 pp 128– (2010) · doi:10.1097/EDE.0b013e3181c30fb2
[63] Strina, Childhood diarrhoea symptoms, management and duration: observations from a longitudinal community study, Transactions of the Royal Society of Tropical Medicine and Hygiene 99 pp 407– (2005) · doi:10.1016/j.trstmh.2004.07.007
[64] Uno, On the C-statistics for evaluating overall adequacy of risk prediction procedures with censored survival data, Statistics in Medicine 30 pp 1105– (2011)
[65] Uno, Evaluating prediction rules for t-year survivors with censored regression models, Journal of the American Statistical Association 102 pp 527– (2007) · Zbl 1172.62327 · doi:10.1198/016214507000000149
[66] Zheng, Time-dependent predictive values of prognostic biomarkers with failure time outcome, Journal of the American Statistical Association 103 pp 362– (2008) · Zbl 1469.62385 · doi:10.1198/016214507000001481
[67] Zheng, Prospective accuracy for longitudinal markers, Biometrics 63 pp 332– (2007) · Zbl 1140.62086 · doi:10.1111/j.1541-0420.2006.00726.x
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.