Aboubi, K.; Robillard, L.; Bilgen, E.; Vasseur, P. Convective heat transfer in an annular fluid layer with centrifugal force field. (English) Zbl 0843.76076 Int. J. Numer. Methods Heat Fluid Flow 5, No. 7, 601-614 (1995). The study deals with two-dimensional convective motion due to the effect of a centrifugal force field on a fluid contained between two horizontal concentric cylinders, for the particular case of an adiabatic inner boundary (zero heat flux) and a constant heat flux imposed on the outer boundary. Governing equations for a two-dimensional flow field are solved using analytical and numerical techniques. Based on a concentric flow approximation, the analytical solution is obtained in terms of the Rayleigh number and the radius ratio. The numerical solution is based on a finite difference method. MSC: 76R10 Free convection 76U05 General theory of rotating fluids 76M20 Finite difference methods applied to problems in fluid mechanics 80A20 Heat and mass transfer, heat flow (MSC2010) Keywords:two horizontal concentric cylinders; concentric flow approximation; analytical solution; numerical solution PDF BibTeX XML Cite \textit{K. Aboubi} et al., Int. J. Numer. Methods Heat Fluid Flow 5, No. 7, 601--614 (1995; Zbl 0843.76076) Full Text: DOI References: [1] DOI: 10.1098/rsta.1970.0073 · doi:10.1098/rsta.1970.0073 [2] DOI: 10.1002/aic.690341006 · doi:10.1002/aic.690341006 [3] DOI: 10.1115/1.2911342 · doi:10.1115/1.2911342 [4] DOI: 10.1017/S0022112087000144 · Zbl 0619.76055 · doi:10.1017/S0022112087000144 [5] DOI: 10.1016/0017-9310(87)90161-X · doi:10.1016/0017-9310(87)90161-X [6] DOI: 10.1016/0017-9310(90)90077-8 · doi:10.1016/0017-9310(90)90077-8 [7] DOI: 10.1002/fld.1650100105 · Zbl 0692.76078 · doi:10.1002/fld.1650100105 [8] DOI: 10.1016/S0017-9310(05)80063-8 · Zbl 0793.76084 · doi:10.1016/S0017-9310(05)80063-8 [9] DOI: 10.1017/S0022112070001921 · Zbl 0224.76041 · doi:10.1017/S0022112070001921 [10] Ladeinde F., J. Fluid Mech. 228 pp 361– (1991) [11] DOI: 10.1063/1.866916 · doi:10.1063/1.866916 [12] Greenspan H. P., The Theory of Rotating Fluids (1969) · Zbl 0181.54303 [13] DOI: 10.1002/cjce.5450700609 · doi:10.1002/cjce.5450700609 [14] DOI: 10.1029/WR004i003p00553 · doi:10.1029/WR004i003p00553 [15] Phillips V. R. C., Near Wall Turbulence (1988) [16] DOI: 10.1007/BF01795829 · Zbl 0318.76030 · doi:10.1007/BF01795829 [17] DOI: 10.1016/0017-9310(87)90089-5 · Zbl 0634.76087 · doi:10.1016/0017-9310(87)90089-5 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.