×

Minimum numbers and Wecken theorems in topological coincidence theory. I. (English) Zbl 1270.55002

Given a self-map \(f: X\to X\) on a compact polyhedron \(X\), the Nielsen number \(N(f)\) is a lower bound for the number of fixed point of all self-maps homotopic to \(f\). In the 1940’s, Wecken proved that \(N(f)\) is sharp (i.e., there is a self-map which is homotopic to \(f\) and has \(N(f)\) fixed points) if \(X\) is a smooth manifold of dimension greater than \(3\). This result is called Wecken theorem.
This paper deals with a more general setting: coincidence points of two maps \(f_1, f_2: M\to N\) between two manifolds without boundaries. The author provides several invariants which can be used to estimate from below the number of coincidence points or the number of components of the coincidence point sets, and obtains Wecken type theorems: under some assumptions these lowers bound are sharp.
Although some of the invariants already appeared in previous works by the author, this paper contains a systematic treatment. All these invariants come from the path space \(E(f_1, f_2)\). The computation of the invariants is in general difficult, however the author in this paper gives many concrete and interesting examples where one can see some new approach to access these invariants. Some further theoretical applications are also provided. For instance, if \(M\) and \(N\) are spheres of special dimensions, respectively, the relations between the Kervaire invariant and the coincidence invariants are illustrated. These show the theoretical interaction among coincidence point theory and other mathematical fields.

MSC:

55M20 Fixed points and coincidences in algebraic topology
54H25 Fixed-point and coincidence theorems (topological aspects)
55P35 Loop spaces
55Q25 Hopf invariants
55Q40 Homotopy groups of spheres
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Atiyah M.F., Smith L.: Compact Lie groups and stable homotopy of spheres. Topology 13, 135–142 (1974) · Zbl 0282.55008 · doi:10.1016/0040-9383(74)90004-4
[2] Browder W.: The Kervaire invariant of framed manifolds and its generalization. Ann. of Math. (2) 90, 157–186 (1969) · Zbl 0198.28501 · doi:10.2307/1970686
[3] J. C. Becker and R. E. Schultz, Fixed point indices and left invariant framings. In: Geometric Applications of Homotopy Theory I (Proc. Conf., Evanston, 1977), Lecture Notes in Math. 657, Springer, Berlin, 1978, 1–31. · Zbl 0391.55014
[4] Bogatyi S.A., Gonçalves D.L., Zieschang H.: Coincidence theory: The minimizing problem. Proc. Steklov Inst. Math. 225, 45–77 (1999) · Zbl 0980.55001
[5] Brown R.: Wecken properties for manifolds. Contemp. Math. 152, 9–21 (1993) · Zbl 0816.55001 · doi:10.1090/conm/152/01315
[6] R. Brown, Nielsen fixed point theory on manifolds. In: Nielsen Theory and Reidemeister Torsion (Warsaw, 1996), Banach Center Publ. 49, Polish Acad. Sci., Warsaw, 1999, 19–27. · Zbl 0938.55002
[7] Brown R., Schirmer H.: Nielsen coincidence theory and coincidenceproducing maps for manifolds with boundary. Topology Appl. 46, 65–79 (1992) · Zbl 0757.55002 · doi:10.1016/0166-8641(92)90040-7
[8] Brooks R.: On removing coincidences of two maps when only one, rather than both, of them may be deformed by a homotopy. Pacific J. Math. 40, 45–52 (1972) · Zbl 0235.55006 · doi:10.2140/pjm.1972.40.45
[9] Crabb M.: The homotopy coincidence index. J. Fixed Point Theory Appl. 7, 1–32 (2010) · Zbl 1205.55002 · doi:10.1007/s11784-010-0006-z
[10] M. Crabb and I. James, Fibrewise Homotopy Theory. Springer Monogr. Math., Springer, London, 1998. · Zbl 0905.55001
[11] Dold A.: The fixed point index of fibre-preserving maps. Invent. Math. 25, 281–297 (1974) · Zbl 0284.55007 · doi:10.1007/BF01389731
[12] Dold A., Gonçalves D.: Self-coincidence of fibre maps. Osaka J. Math. 42, 291–307 (2005) · Zbl 1079.55006
[13] Dax J.P.: Étude homotopique des espaces de plongements. Ann. Sci. École Norm. Sup. (4) 5, 303–377 (1972) · Zbl 0251.58003
[14] Ganea T.: A generalization of the homology and homotopy suspension. Comment. Math. Helv. 39, 295–322 (1965) · Zbl 0142.40702 · doi:10.1007/BF02566956
[15] Gonçalves D.: Fixed points of S 1-fibrations. Pacific J. Math. 129, 297–306 (1987) · Zbl 0608.55003 · doi:10.2140/pjm.1987.129.297
[16] Gonçalves D., Koschorke U.: Nielsen coincidence theory of fibrepreserving maps and Dold’s fixed point index. Topol. Methods Nonlinear Anal. 33, 85–103 (2009) · Zbl 1178.55002
[17] Gonçalves D., Randall D.: Self-coincidence of maps from S q -bundles over S n to S n . Bol. Soc. Mat. Mexicana (3) 10, 181–192 (2004) · Zbl 1097.55001
[18] Gonçalves D., Randall D.: Self-coincidence of mappings between spheres and the strong Kervaire invariant one problem. C. R. Math.Acad. Sci. Paris 342, 511–513 (2006) · Zbl 1091.55007 · doi:10.1016/j.crma.2006.01.016
[19] Gonçalves D., Wong P.: Wecken property for roots. Proc. Amer. Math. Soc. 133, 2779–2782 (2005) · Zbl 1071.55001 · doi:10.1090/S0002-9939-05-07820-2
[20] M. Greenberg, Lectures on Algebraic Topology. W. A. Benjamin, New York, 1967. · Zbl 0169.54403
[21] Hopf H.: Über die algebraische Anzahl von Fixpunkten. Math. Z. 29, 493–524 (1929) · JFM 55.0970.02 · doi:10.1007/BF01180550
[22] Hatcher A., Quinn F.: Bordism invariants of intersections of submanifolds. Trans. Amer. Math. Soc. 200, 327–344 (1974) · Zbl 0291.57019 · doi:10.1090/S0002-9947-1974-0353322-6
[23] M. Hill, M. Hopkins and D. Ravenel, On the non-existence of elements of Kervaire invariant one. arXiv: 0908.37254 v2, 2010. · Zbl 1223.55009
[24] James I.: On the suspension triad. Ann. of Math. (2) 63, 191–247 (1956) · Zbl 0071.17002 · doi:10.2307/1969607
[25] James I.:Products on spheres. Mathematika 6, 1–13 (1959) · Zbl 0121.17804 · doi:10.1112/S0025579300001868
[26] Jezierski J.: The least number of coincidence points on surfaces. J. Aust. Math. Soc. (Ser. A) 58, 27–38 (1995) · Zbl 0834.55005 · doi:10.1017/S1446788700038064
[27] Jiang B.: Fixed points and braids. Invent. Math. 75, 69–74 (1984) · Zbl 0565.55005 · doi:10.1007/BF01403090
[28] Jiang B.: Fixed points and braids II. Math. Ann. 272, 249–256 (1985) · Zbl 0617.55001 · doi:10.1007/BF01450569
[29] Jiang B.: Commutativity and Wecken properties for fixed points of surfaces and 3-manifolds. Topology Appl. 53, 221–228 (1993) · Zbl 0791.55002 · doi:10.1016/0166-8641(93)90138-4
[30] Kervaire M.: A manifold which does not admit any differentiable structure. Comment. Math. Helv. 34, 257–270 (1960) · Zbl 0145.20304 · doi:10.1007/BF02565940
[31] Kervaire M., Milnor J.: Groups of homotopy spheres. I. Ann. of Math. (2) 77, 504–537 (1963) · Zbl 0115.40505 · doi:10.2307/1970128
[32] Kelly M.: Minimizing the number of fixed points for self-maps of compact surfaces. Pacific J. Math. 126, 81–123 (1987) · Zbl 0571.55003 · doi:10.2140/pjm.1987.126.81
[33] Knapp K.: Rank and Adams filtration of a Lie group. Topology 17, 41–52 (1978) · Zbl 0382.55006 · doi:10.1016/0040-9383(78)90011-3
[34] U. Koschorke, Vector Fields and Other Vector Bundle Morphisms–A Singularity Approach. Lecture Notes in Math. 847, Springer, 1981. · Zbl 0459.57016
[35] Koschorke U.: Selfcoincidences in higher codimensions. J. Reine Angew. Math. 576, 1–10 (2004) · Zbl 1054.57030 · doi:10.1515/crll.2004.089
[36] Koschorke U.: Nielsen coincidence theory in arbitrary codimensions: The minimizing problem. Oberwolfach Reports 1, 2342–2344 (2004)
[37] Koschorke U.: Nielsen coincidence theory in arbitrary codimensions. J. Reine Angew. Math. 598, 211–236 (2006) · Zbl 1107.55002
[38] U. Koschorke , Geometric and homotopy theoretic methods in Nielsen coincidence theory. Fixed Point Theory Appl. (2006), Article ID 84093, 1–15 · Zbl 1094.55006
[39] Koschorke U.: Nonstabilized Nielsen coincidence invariants and Hopf-Ganea homomorphisms. Geom. Topol. 10, 619–666 (2006) · Zbl 1128.55002 · doi:10.2140/gt.2006.10.619
[40] Koschorke U.: Selfcoincidences and roots in Nielsen theory. J. Fixed Point Theory Appl. 2, 241–259 (2007) · Zbl 1169.55002 · doi:10.1007/s11784-007-0046-1
[41] Koschorke U.: Minimizing coincidence numbers of maps into projective spaces. Geom. Topol. Monogr. 14, 373–391 (2008) · Zbl 1158.55002 · doi:10.2140/gtm.2008.14.373
[42] U. Koschorke, Some homotopy theoretical questions arising in Nielsen coincidence theory. In: Proceedings of the Postnikov Memorial Conference 2007 in Bedlewo, Banach Center Publications 85, Polish Acad. Sci. Inst. Math., Warsaw, 2009, 275–280. · Zbl 1168.55001
[43] Koschorke U.: Reidemeister coincidence invariants of fiberwise maps. Topology Appl. 157, 1849–1858 (2010) · Zbl 1194.55006 · doi:10.1016/j.topol.2010.02.021
[44] U. Koschorke, Fixed points and coincidences in torus bundles. J. Topology and Analysis, to appear. · Zbl 1226.55002
[45] U. Koschorke and D. Randall, Kervaire invariants and selfcoincidences. Oberwolfach, 2007. · Zbl 1271.55003
[46] Klein J., Williams B.: Homotopical intersection theory. I. Geom. Topol. 11, 939–977 (2007) · Zbl 1132.57024 · doi:10.2140/gt.2007.11.939
[47] Lefschetz S.: Continuous transformations of manifolds. Proc. Natl. Acad. Sci. USA 9, 90–93 (1923) · JFM 49.0409.01 · doi:10.1073/pnas.9.3.90
[48] J. Milnor and J. Stasheff, Characteristic Classes. Ann. of Math. Stud. 76, Princeton University Press, Princeton, NJ, 1974. · Zbl 0298.57008
[49] Nielsen J.: Untersuchungen zur Topologie der geschlossenen zweiseitigen Flächen. Acta Math. 50, 189–358 (1927) · JFM 53.0545.12 · doi:10.1007/BF02421324
[50] Ossa E.: Lie groups as framed manifolds. Topology 21, 315–323 (1982) · Zbl 0491.55008 · doi:10.1016/0040-9383(82)90013-1
[51] R. Palais, Foundations of Global Non-linear Analysis. W. A. Benjamin, New York, 1968. · Zbl 0164.11102
[52] Palais R.: The classification of real division algebras. Amer. Math. Monthly 75, 366–368 (1968) · Zbl 0159.04403 · doi:10.2307/2313414
[53] Paechter G.: The groups {\(\Pi\)} r (V n, m ). I. Quart. J. Math. Oxford Ser. (2) 7, 249–268 (1956) · Zbl 0073.18402 · doi:10.1093/qmath/7.1.249
[54] Salomonsen H.A.: Bordism and geometric dimension. Math. Scand. 32, 87–111 (1973) · Zbl 0264.57009
[55] H. Toda, Composition Methods in Homotopy Groups of Spheres. Ann. of Math. Stud. 49, Princeton University Press, Princeton, NJ, 1962. · Zbl 0101.40703
[56] F Wecken, Fixpunktklassen. I, II, III. Math. Ann. 117 (1940), 659–671; 118 (1941), 216–234 and 544–577.
[57] Whitehead G.: Elements of homotopy theory. Graduate Texts in Mathematics 61. Springer, New York (1978) · Zbl 0406.55001
[58] Zhang X.: The least number of fixed points can be arbitrarily larger than the Nielsen number. Beijing Daxue Xuebao Ziran Kexue Ban 1986, 15–25 (1986) · Zbl 0615.55005
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.