×

The decay of the \(S U(2)\) Yang-Mills fields on the Schwarzschild black hole for spherically symmetric small energy initial data. (English) Zbl 1376.83023

Summary: We prove uniform decay estimates in the entire exterior of the Schwarzschild black hole for gauge invariant norms on the Yang-Mills fields valued in the Lie algebra associated to the Lie group \(SU(2)\). We assume that the initial data are spherically symmetric satisfying a certain Ansatz, and have small energy, which eliminates the stationary solutions which do not decay. In particular, there do not exist any Coulomb type solutions satisfying this Ansatz. We first prove a Morawetz type estimate for the Yang-Mills fields within this setting, using the Yang-Mills equations directly. We then adapt the proof constructed in previous work by the first author to show local energy decay and uniform decay of the \(L^\infty\) norm of the middle components in the entire exterior of the Schwarzschild black hole, including the event horizon.

MSC:

83C57 Black holes
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Bizoń, P.; Rostworowski, A.; Zenginoglu, A., Saddle-point dynamics of a Yang-Mills field on the exterior Schwarzschild spacetime, Classical Quantum Gravity, 27, 175003 (2010) · Zbl 1201.83031
[2] Gu, C.; Hu, H., On the spherically symmetric gauge fields, Comm. Math. Phys., 79, 75-90 (1981)
[3] Witten, E., Some exact multipseudoparticle solutions of classical Yang-Mills theory, Phys. Rev. Lett., 38, 121-124 (1977)
[4] S. Ghanem, On uniform decay of the Maxwell fields on black hole space-times. arXiv:1409.8040; S. Ghanem, On uniform decay of the Maxwell fields on black hole space-times. arXiv:1409.8040
[5] Eardley, D.; Moncrief, V., The global existence of Yang-Mills-Higgs fields in 4-dimensional Minkowski space. I. Local existence and smoothness properties, Comm. Math. Phys., 83, 2, 171-191 (1982) · Zbl 0496.35061
[6] Eardley, D.; Moncrief, V., The global existence of Yang-Mills-Higgs fields in 4-dimensional Minkowski space. II. Completion of proof, Comm. Math. Phys., 83, 2, 193-212 (1982) · Zbl 0496.35062
[7] Chruściel, P.; Shatah, J., Global existence of solutions of the Yang-Mills equations on globally hyperbolic four-dimensional Lorentzian manifolds, Asian J. Math., 1, 3, 530-548 (1997) · Zbl 0912.58039
[8] Ghanem, S., The global non-blow-up of the Yang-Mills curvature on curved space-times, J. Hyperbolic Differ. Equ., 13, 03, 603-631 (2016) · Zbl 1355.35156
[9] Moncrief, V., An integral equation for space-time curvature in General Relativity, (Surveys in Differential Geometry, Vol. X (2006), International Press), 109-146 · Zbl 1153.83018
[10] Hawking, S. W.; Ellis, G. F.R., The Large Scale Structure of Space-Time (1973), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0265.53054
[11] Christodoulou, D.; Klainerman, S., (The Global Nonlinear Stability of the Minkowski Space. The Global Nonlinear Stability of the Minkowski Space, Princeton Math. Series, vol. 41 (1993)) · Zbl 0733.35105
[12] Lindblad, H.; Rodnianski, I., The global stability of Minkowski space-time in harmonic gauge, Ann. of Math. (2), 171, 3, 1401-1477 (2010) · Zbl 1192.53066
[13] P. Hintz, A. Vasy, The global non-linear stability of the Kerr-de Sitter family of black holes. arXiv:1606.04014; P. Hintz, A. Vasy, The global non-linear stability of the Kerr-de Sitter family of black holes. arXiv:1606.04014 · Zbl 1391.83061
[14] Andersson, L.; Blue, P., Hidden symmetries and decay for the wave equation on the Kerr spacetime, Ann. of Math. (2), 182, 3, 787-853 (2015) · Zbl 1373.35307
[15] Dyatlov, S., Quasi-normal modes and exponential energy decay for the Kerr-de Sitter black hole, Comm. Math. Phys., 306, 119-163 (2011) · Zbl 1223.83029
[16] Dafermos, M.; Rodnianski, I., Lectures on black holes and linear waves, (Evolution Equations. Evolution Equations, Clay Mathematics Proceedings, vol. 17 (2013), Amer. Math. Soc.: Amer. Math. Soc. Providence, RI), 97-205 · Zbl 1300.83004
[17] Finster, F.; Kamran, N.; Smoller, J.; Yau, S.-T., Decay of solutions of the wave equation in the Kerr geometry, Comm. Math. Phys., 264, 2, 465-503 (2006) · Zbl 1194.83015
[18] Finster, F.; Kamran, N.; Smoller, J.; Yau, S.-T., Erratum: decay of solutions of the wave equation in the Kerr geometry, Comm. Math. Phys., 280, 2, 563-573 (2008) · Zbl 1194.83014
[19] Tataru, D.; Tohaneanu, M., A local energy estimate on Kerr black hole backgrounds, Int. Math. Res. Not. IMRN, 2, 248-292 (2011) · Zbl 1209.83028
[20] Vasy, A., Microlocal analysis of asymptotically hyperbolic and Kerr-de Sitter spaces (with an appendix by Semyon Dyatlov), Invent. Math., 194, 2, 381-513 (2013) · Zbl 1315.35015
[21] M. Dafermos, G. Holzegel, I. Rodnianski, The linear stability of the Schwarzschild solution to gravitational perturbations. arXiv:1601.06467; M. Dafermos, G. Holzegel, I. Rodnianski, The linear stability of the Schwarzschild solution to gravitational perturbations. arXiv:1601.06467 · Zbl 1419.83023
[22] F. Finster, J. Smoller, Linear stability of the non extreme Kerr black hole. arXiv:1606.08005; F. Finster, J. Smoller, Linear stability of the non extreme Kerr black hole. arXiv:1606.08005 · Zbl 1387.83045
[23] Andersson, L.; Blue, P., Uniform energy bound and asymptotics for the Maxwell field on a slowly rotating Kerr black hole exterior, J. Hyperbolic Differ. Equ., 12, 4, 689-743 (2015) · Zbl 1338.83094
[24] Blue, P., Decay of the Maxwell field on the Schwarzschild manifold, J. Hyperbolic Differ. Equ., 5, 4, 807-856 (2008) · Zbl 1169.35057
[25] P. Hintz, A. Vasy, Asymptotics for the wave equation on differential forms on Kerr-de Sitter space. arXiv:1502.03179; P. Hintz, A. Vasy, Asymptotics for the wave equation on differential forms on Kerr-de Sitter space. arXiv:1502.03179 · Zbl 1336.35244
[26] Sterbenz, J.; Tataru, D., Local energy decay for Maxwell fields part I: Spherically symmetric black-hole backgrounds, Int. Math. Res. Not. IMRN, 11, 3298-3342 (2015) · Zbl 1318.83006
[27] Andersson, L.; Bäckdahl, T.; Blue, P., Decay of solutions to the Maxwell equation on the Schwarzschild background, Class. Quantum Gravity, 33, 085010 (2016) · Zbl 1338.83093
[28] Dafermos, M.; Rodnianski, I., The red shift effect and radiation decay on black hole space-times, Comm. Pure Appl. Math., 62, 859-919 (2009) · Zbl 1169.83008
[29] Forgács, P.; Manton, N. S., Space-Time symmetries in gauge theories, Comm. Math. Phys., 72, 15-35 (1980)
[30] D. Häfner, C. Huneau, Instability of infinitely-many stationary solutions of the SU(2) Yang-Millsfields on the Schwarzschild black hole, arXiv:1612.06596; D. Häfner, C. Huneau, Instability of infinitely-many stationary solutions of the SU(2) Yang-Millsfields on the Schwarzschild black hole, arXiv:1612.06596
[31] Pazy, A., Semigroups of Linear Operators and Applications To Partial Differential Equations (1983), Springer · Zbl 0516.47023
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.