×

Can polylogarithms at algebraic points be linearly independent? (English) Zbl 1459.11144

For \(0\le x\leq 1\) the \(s\)-th Lerch function is defined as \[\Phi_s(x,z)=\sum_{k=0}^{\infty}\frac{z^{k+1}}{(k+x+1)^s}\] for \(s=1,2,\ldots,r\). For \(x=0\) this is the polylogarithmic function Li\(_s(z)\).
For given pairwise distinct algebraic numbers \(\alpha_j\) with \(0\leq |\alpha_j|\leq 1\) \((1\le j\le m)\) the authors state a linear independence criterion over algebraic number fields of the numbers \(\Phi_i(x,\alpha_j)\), for \(1\le s\le r\), \(1\le j\le m\) and 1. An explicit sufficient condition is given for the linear independence of values of the Lerch functions \(\Phi_i(x,z)\), \(1\le s\le r\), at \(m\) distinct points in an algebraic number field of arbitrary finite degree without any assumptions on \(r\) and \(m\). For \(x=0\), these results imply the linear independence of polylogarithms of distinct algebraic numbers of arbitrary degree, subject to a metric condition.
The proof bases on Padé approximation techniques.
The paper is illustrated by interesting examples. For \(|b|\ge e^{2715}\) the numbers 1, Li\(_1(1/b)\),…,Li\(_{10}(1/b)\),…,Li\(_1(1/(10b))\),…,Li\(_{10}(1/(10b))\) are linearly independent over \(\mathbb Q\).

MSC:

11G55 Polylogarithms and relations with \(K\)-theory
11J72 Irrationality; linear independence over a field
11J82 Measures of irrationality and of transcendence
11J86 Linear forms in logarithms; Baker’s method
11M35 Hurwitz and Lerch zeta functions
11D75 Diophantine inequalities
11D88 \(p\)-adic and power series fields
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] ; Chudnovsky, J. Math. Pures Appl. (9), 58, 445 (1979) · Zbl 0434.10023
[2] ; Chudnovsky, Number theory days, 1980. London Math. Soc. Lecture Note Ser., 56, 11 (1982)
[3] 10.2307/2007080 · Zbl 0518.10038 · doi:10.2307/2007080
[4] 10.1073/pnas.81.22.7261 · Zbl 0566.10029 · doi:10.1073/pnas.81.22.7261
[5] 10.1007/BFb0074600 · doi:10.1007/BFb0074600
[6] ; Feldman, Mat. Sb. (N.S.), 77, 423 (1968)
[7] 10.1007/978-3-662-03644-0 · doi:10.1007/978-3-662-03644-0
[8] 10.1112/s0010437x1900722x · Zbl 1430.11097 · doi:10.1112/s0010437x1900722x
[9] 10.1112/jlms/s2-15.3.395 · Zbl 0358.10015 · doi:10.1112/jlms/s2-15.3.395
[10] ; Galochkin, Mat. Sb. (N.S.), 95(137), 396 (1974) · Zbl 0311.10035
[11] ; Galochkin, Mat. Zametki, 18, 541 (1975) · Zbl 0319.10039
[12] ; Hata, J. Math. Pures Appl. (9), 69, 133 (1990) · Zbl 0712.11040
[13] 10.2307/2154351 · Zbl 0768.11022 · doi:10.2307/2154351
[14] ; Hirata-Kohno, Algebraic number theory and related topics 2014. RIMS Kôkyûroku Bessatsu, B64, 3 (2017) · Zbl 1430.11098
[15] 10.3836/tjm/1502179237 · doi:10.3836/tjm/1502179237
[16] 10.21099/tkbjm/1429103719 · Zbl 1323.11052 · doi:10.21099/tkbjm/1429103719
[17] ; Marcovecchio, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 5, 1 (2006) · Zbl 1114.11063
[18] ; Nikishin, Mat. Sb. (N.S.), 109, 410 (1979)
[19] ; Nikishin, Izv. Akad. Nauk SSSR Ser. Mat., 43, 1319 (1979) · Zbl 0422.10024
[20] ; Nurmagomedov, Vestnik Moskov. Univ. Ser. I Mat. Meh., 26, 79 (1971) · Zbl 0238.10019
[21] 10.1016/0022-314X(86)90036-3 · Zbl 0596.10033 · doi:10.1016/0022-314X(86)90036-3
[22] 10.4064/aa-77-1-23-56 · Zbl 0864.11037 · doi:10.4064/aa-77-1-23-56
[23] ; Rhin, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 4, 389 (2005) · Zbl 1170.11316
[24] 10.5802/jtnb.413 · Zbl 1079.11038 · doi:10.5802/jtnb.413
[25] 10.1007/978-88-7642-520-2_2 · Zbl 07814811 · doi:10.1007/978-88-7642-520-2_2
[26] 10.4064/aa-36-3-273-295 · Zbl 0369.10021 · doi:10.4064/aa-36-3-273-295
[27] 10.4064/aa-50-3-251-263 · Zbl 0654.10034 · doi:10.4064/aa-50-3-251-263
[28] 10.1515/crelle-2015-0030 · Zbl 1454.11131 · doi:10.1515/crelle-2015-0030
[29] 10.1070/IM1996v060n01ABEH000063 · Zbl 0931.11025 · doi:10.1070/IM1996v060n01ABEH000063
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.