×

Numerical strategies for solving multiparameter spectral problems. (English) Zbl 07250761

Sergeyev, Yaroslav D. (ed.) et al., Numerical computations: theory and algorithms. Third international conference, NUMTA 2019, Crotone, Italy, June 15–21, 2019. Revised selected papers. Part II. Cham: Springer. Lect. Notes Comput. Sci. 11974, 298-305 (2020).
Summary: We focus on the solution of multiparameter spectral problems, and in particular on some strategies to compute coarse approximations of selected eigenparameters depending on the number of oscillations of the associated eigenfunctions. Since the computation of the eigenparameters is crucial in codes for multiparameter problems based on finite differences, we herein present two strategies. The first one is an iterative algorithm computing solutions as limit of a set of decoupled problems (much easier to solve). The second one solves problems depending on a parameter \(\sigma \in [0,1]\), that give back the original problem only when \(\sigma=1\). We compare the strategies by using well known test problems with two and three parameters.
For the entire collection see [Zbl 1435.65017].

MSC:

65-XX Numerical analysis

Software:

HOFiD_UP
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Abramov, A.A., Ul’yanova, V.I.: A method for solving selfadjoint multiparameter spectral problems for weakly coupled sets of ordinary differential equations. Comput. Math. Math. Phys. 37(5), 552-557 (1997)
[2] Amodio, P., Levitina, T., Settanni, G., Weinmüller, E.B.: On the calculation of the finite Hankel transform eigenfunctions. J. Appl. Math. Comput. 43(1-2), 151-173 (2013). https://doi.org/10.1007/s12190-013-0657-1 · Zbl 1296.65188
[3] Amodio, P., Levitina, T., Settanni, G., Weinmüller, E.B.: Numerical simulation of the whispering gallery modes in prolate spheroids. Comput. Phys. Commun. 185(4), 1200-1206 (2014). https://doi.org/10.1016/j.cpc.2013.12.012 · Zbl 1344.35019
[4] Amodio, P., Levitina, T., Settanni, G., Weinmüller, E.B.: Whispering gallery modes in oblate spheroidal cavities: calculations with a variable stepsize. In: Proceedings of the ICNAAM-2014, AIP Conference Proceedings, vol. 1648, p. 150019 (2015). https://doi.org/10.1063/1.4912449
[5] Amodio, P., Settanni, G.: A matrix method for the solution of Sturm-Liouville problems. JNAIAM. J. Numer. Anal. Ind. Appl. Math. 6(1-2), 1-13 (2011) · Zbl 1432.65107
[6] Amodio, P., Settanni, G.: A stepsize variation strategy for the solution of regular Sturm-Liouville problems. In: Simos, T.E., Psihoyios, G., Tsitouras, C., Anastassi, Z. (eds.) Numerical Analysis and Applied Mathematics ICNAAM 2011, AIP Conference Proceedings, vol. 1389, pp. 1335-1338 (2011). https://doi.org/10.1063/1.3637866 · Zbl 1432.65107
[7] Amodio, P., Settanni, G.: A finite differences MATLAB code for the numerical solution of second order singular perturbation problems. J. Comput. Appl. Math. 236(16), 3869-3879 (2012). https://doi.org/10.1016/j.cam.2012.04.011 · Zbl 1246.65127
[8] Amodio, P., Settanni, G.: Variable-step finite difference schemes for the solution of Sturm-Liouville problems. Commun. Nonlinear Sci. Numer. Simulat. 20(3), 641-649 (2015). https://doi.org/10.1016/j.cnsns.2014.05.032 · Zbl 1304.65181
[9] Arscott, F.M.: Two-parameter eigenvalue problems in differential equations. Proc. London Math. Soc. 14(3), 459-470 (1964). https://doi.org/10.1112/plms/s3-14.3.459 · Zbl 0121.31102
[10] Atkinson, F.V.: Multiparameter Eigenvalue Problems. Matrices and Compact Operators, vol. 1. Academic Press, New York (1972). Mathematics in Science and Engineering, vol. 82 · Zbl 0555.47001
[11] Bailey, P.B.: The automatic solution of two-parameter Sturm-Liouville eigenvalue problems in ordinary differential equations. Appl. Math. Comput. 8(4), 251-259 (1981). https://doi.org/10.1016/0096-3003(81)90021-7 · Zbl 0459.65065
[12] Faierman, M.: On the distribution of the eigenvalues of a two-parameter system of ordinary differential equations of the second order. SIAM J. Math. Anal. 8(5), 854-870 (1977). https://doi.org/10.1137/0508065 · Zbl 0366.34016
[13] Faierman, M.: Distribution of eigenvalues of a two-parameter system of differential equations. Trans. Amer. Math. Soc. 247, 86-145 (1979). https://doi.org/10.1090/S0002-9947-1979-0517686-7 · Zbl 0404.34023
[14] Gheorghiu, C.I., Hochstenbach, M.E., Plestenjak, B., Rommes, J.: Spectral collocation solutions to multiparameter Mathieu’s system. Appl. Math. Comput. 218(24), 11990-12000 (2012). https://doi.org/10.1016/j.amc.2012.05.068 · Zbl 1280.65078
[15] Levitina, T.V.: A numerical solution to some three-parameter spectral problems. Comput. Math. Math. Phys. 39(11), 1715-1729 (1999) · Zbl 0977.65099
[16] Plestenjak, B., Gheorghiu, C.I., Hochstenbach, M.E.: Spectral collocation for multiparameter eigenvalue problems arising from separable boundary value problems. J. Comput. Phys. 298, 585-601 (2015). https://doi.org/10.1016/j.jcp.2015.06.015 · Zbl 1349.65655
[17] Sleeman, B.D.: Multi-parameter eigenvalue problems in ordinary differential equations. Bul. Inst. Politehn. Iaşi (N.S.) 17(21)(3-4, sect. I), 51-60 (1971) · Zbl 0352.34025
[18] Sleeman, B.D.: The two parameter Sturm-Liouville problem for ordinary differential equations. Proc. Roy. Soc. Edinburgh, Sect. A 69(2), 139-148 (1971) · Zbl 0235.34052
[19] Turyn, L. · Zbl 0421.34023
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.