×

Dispersion analysis of spectral element methods for elastic wave propagation. (English) Zbl 1231.74185

Summary: We study the numerical dispersion of spectral element methods of arbitrary order for the isotropic elastic wave equation in two and three dimensions by a simplified modal analysis of the discrete wave operators. This analysis is based on a Rayleigh quotient approximation of the eigenvalue problem that characterizes the dispersion relation. This approximation takes full advantage of the tensor product representation of the spectral element matrices. We compute dispersion graphs that show the dependence of the phase/group velocity, the polarization error, and the numerical anisotropy on the grid resolution as well as the polynomial degree with both Gauss-Lobatto-Chebyshev and Gauss-Lobatto-Legendre collocation points.

MSC:

74J05 Linear waves in solid mechanics
74S30 Other numerical methods in solid mechanics (MSC2010)
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Abboud, N.; Pinsky, P., Finite element dispersion analysis for the three-dimensional second-order scalar wave equation, Int. J. Numer. Methods Eng., 35, 6, 1183-1218 (1992) · Zbl 0764.76033
[2] Canuto, C.; Hussaini, M.; Quarteroni, A.; Zang, T., Spectral Methods in Fluid Dynamics (1987), Springer-Verlag: Springer-Verlag New York, NY
[3] Chaljub, E.; Komatitsch, D.; Vilotte, J.-P.; Capdeville, Y.; Valette, B.; Festa, G., Spectral element analysis in seismology, (Wu, R.-S.; Maupin, V., Advances in Wave Propagation in Heterogeneous Media. Advances in Wave Propagation in Heterogeneous Media, Advances in Geophysics, vol. 48 (2007), Elsevier), 365-419
[4] Christon, M., The influence of the mass matrix on the dispersive nature of the semi-discrete, second-order wave equation, Comput. Methods Appl. Mech. Eng., 173, 1-2, 147-166 (1999) · Zbl 0964.76038
[5] Cohen, G., Higher-Order Numerical Methods for Transient Wave Equations (2002), Springer-Verlag: Springer-Verlag New York, NY · Zbl 0985.65096
[6] J. Cottrell, T. Hughes, A. Reali, G. Sangalli, Isogeometric discretizations in structural dynamics and wave propagation, in: ECCOMAS Thematic Conference on Computational Methods in Structural Dynamics and Earthquake Engineering, Rethymno, Greece, 2007.; J. Cottrell, T. Hughes, A. Reali, G. Sangalli, Isogeometric discretizations in structural dynamics and wave propagation, in: ECCOMAS Thematic Conference on Computational Methods in Structural Dynamics and Earthquake Engineering, Rethymno, Greece, 2007.
[7] Dauksher, W.; Emery, A., Accuracy in modeling the acoustic wave equation with Chebyshev spectral finite elements, Finite Elem. Anal. Des., 26, 2, 115-128 (1997) · Zbl 0896.65067
[8] J. De Basabe, M. Sen, Grid dispersion and stability criteria of some common finite difference and finite element methods for acoustic and elastic wave propagation, in: SEG Annual Meeting, San Antonio, TX, 2007.; J. De Basabe, M. Sen, Grid dispersion and stability criteria of some common finite difference and finite element methods for acoustic and elastic wave propagation, in: SEG Annual Meeting, San Antonio, TX, 2007.
[9] Eringen, A.; Suhubi, E., Elastodynamics, vol. 2 (1975), Academic Press: Academic Press New York, NY · Zbl 0344.73036
[10] Hochstenbach, M. E.; van der Vorst, H. A., Alternatives to the Rayleigh quotient for the quadratic eigenvalue problem, SIAM J. Sci. Comput., 25, 2, 591-603 (2003) · Zbl 1042.65028
[11] Komatitsch, D.; Tromp, J., Introduction to the spectral-element method for 3-D seismic wave propagation, Geophys. J. Int., 139, 3, 806-822 (1999)
[12] Lütkepohl, H., Handbook of Matrices (1996), John Wiley & Sons: John Wiley & Sons Chichester, UK · Zbl 0856.15001
[13] Maday, Y.; Rønquist, E. M., Optimal error analysis of spectral methods with emphasis on non-constant coefficients and deformed geometries, Comput. Methods Appl. Mech. Eng., 80, 1-3, 91-115 (1990) · Zbl 0728.65078
[14] Marfurt, K., Accuracy of finite-difference and finite-element modeling of the scalar and elastic wave equations, Geophysics, 49, 5, 533-549 (1984)
[15] Marfurt, K., Appendix – analysis of higher order finite-element methods, (Kelly, K.; Marfurt, K., Numerical Modeling of Seismic Wave Propagation. Numerical Modeling of Seismic Wave Propagation, Geophysics Reprint Series, Soc. Expl. Geophys., vol. 13 (1990), Tulsa: Tulsa OK), 516-520
[16] Mercerat, E. D.; Vilotte, J. P.; Sanchez-Sesma, F. J., Triangular spectral element simulation of two-dimensional elastic wave propagation using unstructured triangular grids, Geophys. J. Int., 166, 2, 679-690 (2006)
[17] Mulder, W., Spurious modes in finite-element discretizations of the wave equation may not be all that bad, Appl. Numer. Math., 30, 4, 425-445 (1999) · Zbl 0933.65112
[18] Nickalls, R., A new approach to solving the cubic: Cardan’s solution revealed, Math. Gazette, 77, 480, 354-359 (1993)
[19] Padovani, E.; Priolo, E.; Seriani, G., Low- and high-order finite element method: Experience in seismic modeling, J. Comput. Acoust., 2, 371-422 (1994) · Zbl 1360.86005
[20] Patera, A., A spectral element method for fluid dynamics: laminar flow in a channel expansion, J. Comput. Phys., 54, 3, 468-488 (1984) · Zbl 0535.76035
[21] Priolo, E.; Carcione, J.; Seriani, G., Numerical simulation of interface waves by high-order spectral modeling techniques, J. Acoust. Soc. Am., 95, 2, 681-693 (1994)
[22] Seriani, G., A parallel spectral element method for acoustic wave modeling, J. Comput. Acoust., 5, 1, 53-69 (1997) · Zbl 1360.76194
[23] Seriani, G.; Oliveira, S. P., Optimal blended spectral element operators for forward modeling, Geophysics, 72, 5, SM95-SM106 (2007)
[24] G. Seriani, S.P. Oliveira, DFT modal analysis of spectral element methods for acoustic wave propagation, J. Comput. Acoust., accepted for publication.; G. Seriani, S.P. Oliveira, DFT modal analysis of spectral element methods for acoustic wave propagation, J. Comput. Acoust., accepted for publication. · Zbl 1257.76078
[25] Seriani, G.; Priolo, E., Spectral element method for acoustic wave simulation in heterogeneous media, Finite Elem. Anal. Des., 16, 3-4, 337-348 (1994) · Zbl 0810.73079
[26] Thompson, L.; Pinsky, P., Complex wavenumber Fourier analysis of the p-version finite element method, Comput. Mech., 13, 4, 255-275 (1994) · Zbl 0789.73076
[27] Zyserman, F.; Gauzellino, P., Dispersion analysis of a nonconforming finite element method for the three-dimensional scalar and elastic wave equations, Finite Elem. Anal. Des., 41, 13, 1309-1326 (2005)
[28] Zyserman, F.; Gauzellino, P.; Santos, J., Dispersion analysis of a non-conforming finite element method for the Helmholtz and elastodynamics equations, Int. J. Numer. Methods Eng., 58, 9, 1381-1395 (2003) · Zbl 1032.74692
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.