zbMATH — the first resource for mathematics

Revisiting Groeneveld’s approach to the virial expansion. (English) Zbl 07326367
Summary: A generalized version of Groeneveld’s convergence criterion for the virial expansion and generating functionals for weighted two-connected graphs is proven. This criterion works for inhomogeneous systems and yields bounds for the density expansions of the correlation functions \(\rho_s\) (a.k.a. distribution functions or factorial moment measures) of grand-canonical Gibbs measures with pairwise interactions. The proof is based on recurrence relations for graph weights related to the Kirkwood-Salsburg integral equation for correlation functions. The proof does not use an inversion of the density-activity expansion; however, a Möbius inversion on the lattice of set partitions enters the derivation of the recurrence relations.
©2021 American Institute of Physics
82B20 Lattice systems (Ising, dimer, Potts, etc.) and systems on graphs arising in equilibrium statistical mechanics
05C22 Signed and weighted graphs
Full Text: DOI
[1] Ruelle, D., Statistical Mechanics: Rigorous Results (1969), World Scientific · Zbl 0177.57301
[2] Beneš, V.; Hofer-Temmel, C.; Last, G.; Večeřa, J., Decorrelation of a class of Gibbs particle processes and asymptotic properties of U-statistics, J. Appl. Probab., 57, 3, 928-955 (2020) · Zbl 1457.60066
[3] Dereudre, D., Introduction to the theory of Gibbs point processes, Stochastic Geometry, 181-229 (2019), Springer: Springer, Cham
[4] Georgii, H.-O.; Häggström, O.; Maes, C., The random geometry of equilibrium phases, Phase Transitions and Critical Phenomena, 1-142 (2001), Academic Press: Academic Press, San Diego, CA
[5] Hofer-Temmel, C.; Houdebert, P., Disagreement percolation for Gibbs ball models, Stochastic Process. Appl., 129, 10, 3922-3940 (2019) · Zbl 1426.82016
[6] Houdebert, P.; Zass, A., An explicit continuum Dobrushin uniqueness criterion for Gibbs point processes with non-negative pair potentials (2020)
[7] Fernández, R.; Groisman, P.; Saglietti, S., Stability of gas measures under perturbations and discretizations, Rev. Math. Phys., 28, 10, 1650022-1650046 (2016) · Zbl 1354.60117
[8] Ferrari, P. A.; Fernández, R.; Garcia, N. L., Perfect simulation for interacting point processes, loss networks and Ising models, Stochastic Process. Appl., 102, 1, 63-88 (2002) · Zbl 1075.60583
[9] Helmuth, T.; Perkins, W.; Petti, S., Correlation decay for hard spheres via Markov chains (2020)
[10] Meeron, E., Bounds, successive approximations, and thermodynamic limits for distribution functions, and the question of phase transitions for classical systems with non-negative interactions, Phys. Rev. Lett., 25, 152-155 (1970)
[11] Michelen, M.; Perkins, W., Analyticity for classical gasses via recursion (2020)
[12] Lieb, E., New method in the theory of imperfect gases and liquids, J. Math. Phys., 4, 671-678 (1963)
[13] Hansen, J.-P.; McDonald, I. R., Theory of Simple Liquids: With Applications to Soft Matter (2013), Academic Press, Elsevier · Zbl 1277.00030
[14] Kuna, T.; Tsagkarogiannis, D., Convergence of density expansions of correlation functions and the Ornstein-Zernike equation, Ann. Henri Poincaré, 19, 4, 1115-1150 (2018) · Zbl 1400.82163
[15] Brydge, D. C. (2011), International Association of Mathematical Physics News Bulletin
[16] Groeneveld, J., Estimation methods for Mayer’s graphical expansions. IV. Estimation methods of degree 2, Ned. Akad. Wet., Ser. B, 70, 490-507 (1967) · Zbl 0212.29301
[17] Joyce, G. S., On the hard-hexagon model and the theory of modular functions, Philos. Trans. R. Soc. London, Ser. A, 325, 1588, 643-702 (1988) · Zbl 0654.10026
[18] Jansen, S., Cluster and virial expansions for the multi-species Tonks gas, J. Stat. Phys., 161, 5, 1299-1323 (2015) · Zbl 1341.82015
[19] Tonks, L., The complete equation of state of one, two and three-dimensional gases of hard elastic spheres, Phys. Rev., 50, 955-963 (1936) · JFM 62.1607.19
[20] Brydges, D. C.; Marchetti, D. H. U., On the virial series for a gas of particles with uniformly repulsive pairwise interactions (2014)
[21] Marchetti, D. H. U., The virial series for a gas of particles with uniformly repulsive pairwise interaction and its relation with the approach to the mean field, Braz. J. Probab. Stat., 29, 2, 502-539 (2015) · Zbl 1319.35196
[22] Jansen, S., Thermodynamics of a hierarchical mixture of cubes, J. Stat. Phys., 179, 2, 309-340 (2020) · Zbl 1437.82007
[23] Jansen, S., Mayer and virial series at low temperature, J. Stat. Phys., 147, 4, 678-706 (2012) · Zbl 1252.82045
[24] Lebowitz, J. L.; Penrose, O., Convergence of virial expansions, J. Math. Phys., 5, 841-847 (1964)
[25] Pulvirenti, E.; Tsagkarogiannis, D., Cluster expansion in the canonical ensemble, Commun. Math. Phys., 316, 2, 289-306 (2012) · Zbl 1260.82057
[26] Ramawadh, S.; Tate, S. J., Virial expansion bounds through tree partition schemes (2015)
[27] Nguyen, T. X.; Fernández, R., Convergence of cluster and virial expansions for repulsive classical gases, J. Stat. Phys., 179, 2, 448-484 (2020) · Zbl 1434.82011
[28] Minlos, R. A.; Pogosjan, S. K., Estimates of Ursell functions, group functions and their derivatives, Teor. Mat. Fiz., 31, 2, 199-213 (1977); Minlos, R. A.; Pogosjan, S. K., Estimates of Ursell functions, group functions and their derivatives, Teor. Mat. Fiz., 31, 2, 199-213 (1977), 10.1007/bf01036671;
[29] Penrose, O., Convergence of fugacity expansions for fluids and lattice gases, J. Math. Phys., 4, 1312-1320 (1963) · Zbl 0122.46205
[30] Dorlas, T. C.; Rebenko, A. L.; Savoie, B., Correlation of clusters: Partially truncated correlation functions and their decay, J. Math. Phys., 61, 3, 033303-033328 (2020) · Zbl 1434.82041
[31] Bogolyubov, N. N.; Petrina, D. Ya.; Khatset, B. I., Mathematical description of the equilibrium state of classical systems on the basis of the canonical ensemble, Teoret. Mat. Fiz., 1, 2, 251-274 (1969)
[32] Bogolyubov, N. N.; Hacet, B. I., On some mathematical problems of the theory of statistical equilibrium, Dokl. Akad. Nauk SSSR, 66, 321-324 (1949)
[33] Bissacot, R.; Fernández, R.; Procacci, A., On the convergence of cluster expansions for polymer gases, J. Stat. Phys., 139, 4, 598-617 (2010) · Zbl 1196.82135
[34] Jansen, S.; Kolesnikov, L., Activity expansions for Gibbs correlation functions, 145-154 (2020), Universitätsverlag Potsdam · Zbl 07223346
[35] Jansen, S.; Kuna, T.; Tsagkarogiannis, D., Virial inversion and density functionals (2019)
[36] Faris, W. G., Combinatorics and cluster expansions, Probab. Surveys, 7, 157-206 (2010) · Zbl 1191.82009
[37] Kaouche, A.; Leroux, P., Mayer and Ree-Hoover weights of infinite families of 2-connected graphs, 28 (2009), Univ. Louis Pasteur, Univ. Wien, Fak. Math. · Zbl 1283.05233
[38] Leroux, P., Enumerative problems inspired by Mayer’s theory of cluster integrals, Electron. J. Combin., 11, 1, 28 (2004) · Zbl 1054.05056
[39] Tate, S. J., A solution to the combinatorial puzzle of Mayer’s virial expansion, Ann. Inst. Henri Poincaré D, 2, 3, 229-262 (2015) · Zbl 1337.82005
[40] Stell, G.; Frisch, H. L.; Lebowitz, J. L., Cluster expansions for classical systems in equilibrium, The Equilibrium Theory of Classical Fluids, 171-261 (1964), Benjamin: Benjamin, New York
[41] Malyshev, V. A.; Minlos, R. A., Gibbs Random Fields (1991), Kluwer Academic Publishers Group: Kluwer Academic Publishers Group, Dordrecht · Zbl 0731.60099
[42] Poghosyan, S.; Ueltschi, D., Abstract cluster expansion with applications to statistical mechanical systems, J. Math. Phys., 50, 5, 053509 (2009) · Zbl 1187.82009
[43] Jansen, S., Cluster expansions for Gibbs point processes, Adv. Appl. Probab., 51, 1129-1178 (2019) · Zbl 1427.60202
[44] Ueltschi, D., Cluster expansions and correlation functions, Moscow Math. J., 4, 2, 511-522 (2004) · Zbl 1070.82002
[45] Pulvirenti, E.; Tsagkarogiannis, D., Finite volume corrections and decay of correlations in the canonical ensemble, J. Stat. Phys., 159, 5, 1017-1039 (2015) · Zbl 1329.82083
[46] Kondratiev, Y. G.; Kuna, T., Correlation functionals for Gibbs measures and Ruelle bounds, Methods Funct. Anal. Topol., 9, 1, 9-58 (2003) · Zbl 1024.82009
[47] Ruelle, D., Superstable interactions in classical statistical mechanics, Commun. Math. Phys., 18, 127-159 (1970) · Zbl 0198.31101
[48] Lenard, A., States of classical statistical mechanical systems of infinitely many particles. II. Characterization of correlation measures, Arch. Ration. Mech. Anal., 59, 3, 241-256 (1975)
[49] Nehring, B.; Poghosyan, S.; Zessin, H., On the construction of point processes in statistical mechanics, J. Math. Phys., 54, 6, 063302 (2013) · Zbl 1285.82026
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.