×

\(\mathfrak p\)-rigidity and Iwasawa \(\mu\)-invariants. (English) Zbl 1405.11083

According to the authors’ introduction, “zeta values” seem to mysteriously encode deep arithmetical information, and also to suggest surprising modular and Iwasawa-theoretic phenomena. Sometimes, they are a sum of evaluations of modular forms at CM points. Such an expression for critical Hecke \(L\)-values and conjectural nontriviality of the corresponding anticyclotomic \(p\)-adic \(L\)-function, suggested to the second author a linear independence of mod\(\,p\) Hilbert modular forms, which he proved based on Chai’s theory of Hecke-stable subvarieties of a Shimura variety [Ann. Math. (2) 172, No. 1, 41–137 (2010; Zbl 1223.11131)]. Here, given a totally real field \(F\) of degree \(d\) with ring of integers \(O\), an odd\(\,p\) unramified in \(F\) and a prime \({\mathfrak p}\) of \(F\) above \(p\), the expression and conjectural nontriviality of the corresponding anticyclotomic \({\mathfrak p}\)-adic \(L\)-function lead the authors to show a rather surprising rigidity property of mod\(\,p\) Hilbert modular forms. Partly based on this rigidity, they also obtain intriguing equalities between Iwasawa \(\mu\)-invariants of seemingly independent \(p\)-adic \(L\)-functions.
Let us give a few details. The authors’ \({\mathfrak p}\)-rigidity theorem states that a nonzero mod\(\,p\) Hilbert modular form over \(F\) does not vanish identically on the partial Serre-Tate deformation space \(\widehat{\mathbb{G}}_m\otimes O_{\mathfrak p}\). In particular, such a form is determined by its restriction to \(\widehat{\mathbb{G}}_m\otimes O_{\mathfrak p}\). Let then \(K\) be a totally imaginary quadratic extension of \(F\) such that every prime of \(F\) above \(p\) splits in \(K\). The splitting condition guarantees the existence of a \(p\)-adic CM type, i.e., a CM type \(\Sigma\) of \(K\) such that the \(p\)-adic places induced by elements in \(\Sigma\) via \(\iota_p:\overline{{\mathbb Q}}\to\mathbb{C}\) are disjoint from the ones induced by \(\Sigma c\) via \(\iota_\infty\) (where \(c\) is the complex conjugation on \(\mathbb{C}\) which induces the unique non-trivial element of Gal\((K/F)\)). Such a CM type can be identified with the set of infinite places of \(F\). Let \(K^-_\infty\) (resp. \(K^+_\infty\)) be the anticyclotomic \(\mathbb{Z}^d_p\)-extension (resp. cyclotomic \(\mathbb{Z}_p\)-extension) of \(K\) and \(K^-_{{\mathfrak p},\infty}\subset K^-_\infty\) the \({\mathfrak p}\)-anticyclotomic subextension, i.e., the maximal subextension unramified outside the primes above \({\mathfrak p}\) in \(K\). Let \(K_{{\mathfrak p},\infty}= K^-_{{\mathfrak p},\infty}\), \(K^+_\infty\), \(\Gamma^{\pm}= \text{Gal}(K^{\pm}_\infty/K)\), \(\Gamma^-_{\mathfrak p}= \text{Gal}(K^-_{{\mathfrak p},\infty}/K)\) and \(\Gamma_{\mathfrak p}= \text{Gal}(K_{{\mathfrak p},\infty}/K)\). Let \(\lambda\) be an arihmetic Hecke character over \(K\), with prime-to-\(p\) conductor. Associated to this data, a natural \((d+1)\)-variable Katz \(p\)-adic \(L\)-function \(L_{\Sigma,\lambda}(T_1,\dots,T_d,S)\in\overline{\mathbb{Z}}_p[[\Gamma]]\) can be constructed, where the \(T_i\) are the anticyclotomic variables and \(S\) the cyclotomic one. Let \(L^-_{\Sigma,\lambda}\), \(L^-_{\Sigma,\lambda,{\mathfrak p}}\) and \(L_{\Sigma,\lambda,{\mathfrak p}}\) be obtained by projecting \(\overline{\mathbb{Z}}_p[[\Gamma]]\) onto resp. \(\overline{\mathbb{Z}}_p[[\Gamma^-]]\), \(\overline{\mathbb{Z}}_p[[\Gamma^-_{\mathfrak p}]]\) and \(\overline{\mathbb{Z}}_p[[\Gamma_{\mathfrak p}]]\). If \(K/F\) is \(p\)-ordinary, the authors show that the anti-cyclotomic \(\mu\)-invariants verify \(\mu(L^-_{\Sigma,\lambda,{\mathfrak p}})= \mu(L^-_{\Sigma,\lambda})\). Note that in most cases, the latter \(\mu\)-invariant has been determined explicitly ([the second author, loc. cit.; M.-L. Hsieh, J. Reine Angew. Math. 688, 67–100 (2014; Zbl 1294.11195)]).
When \(\lambda\) is self-dual with root number \(-1\), all the Hecke \(L\)-values appearing in the interpolation property of \(L^-_{\Sigma,\lambda}\) vanish, so that \(L^-_{\Sigma,\lambda}\) and \(L^-_{\Sigma,\lambda,{\mathfrak p}}\) identically vanish. However, one can look at the cyclotomic derivatives \(L_{\Sigma,\lambda}'= ({\partial\over\partial S}L_{\Sigma,\lambda}(T_1,\dots,T_d, S))|_{S=0}\) and \(L_{\Sigma,\lambda,{\mathfrak p}}'\) (defined analogously).
The \(\mu\)-invariants of \(L_{\Sigma,\lambda,{\mathfrak p}}'\) and \(L_{\Sigma,\lambda}'\) are then related as follows: if \(K/F\) is \(p\)-ordinary and \(p\) does not divide the relative class number \(h^-_K\), then \(\mu(L_{\Sigma,\lambda,{\mathfrak p}}')= \mu(L_{\Sigma,\lambda}')\). Note again that in most cases, the latter \(\mu\)-invariant has been determined explicitly ([the first author, J. Inst. Math. Jussieu 14, No. 1, 131–148 (2015; Zbl 1323.11087)]).
Finally the authors prove the following \({\mathfrak p}\)-version of a conjecture by R. Gillard [Sémin. Théor. Nombres Bordx., Sér. II 3, No. 1, 13–26 (1991; Zbl 0732.11060)] regarding the vanishing of the \(\mu\)-invariant of the Katz \(p\)-adic \(L\)-function: if \(K/F\) is a \(p\)-ordinary CM quadratic extension and \(\lambda\) is an arithmetic Hecke character over \(K\), then \(\mu(L_{\Sigma,\lambda,{\mathfrak p}})=0\).

MSC:

11G18 Arithmetic aspects of modular and Shimura varieties
19F27 Étale cohomology, higher regulators, zeta and \(L\)-functions (\(K\)-theoretic aspects)
11R23 Iwasawa theory
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] 10.1093/imrn/rnq275 · Zbl 1267.11069 · doi:10.1093/imrn/rnq275
[2] 10.1017/S1474748013000388 · Zbl 1323.11087 · doi:10.1017/S1474748013000388
[3] 10.1186/s40687-016-0060-2 · Zbl 1398.11075 · doi:10.1186/s40687-016-0060-2
[4] ; Burungale, p-adic aspects of modular forms, 279 (2016)
[5] 10.1017/S147474801500016X · Zbl 1365.19003 · doi:10.1017/S147474801500016X
[6] 10.1017/fms.2015.30 · Zbl 1391.11078 · doi:10.1017/fms.2015.30
[7] ; Burungale, Int. Math. Res. Not., 2013, 1014 (2013) · Zbl 1358.11121
[8] 10.1007/BF01884309 · Zbl 0990.11039 · doi:10.1007/BF01884309
[9] ; Chai, International Congress of Mathematicians, II, 295 (2006)
[10] 10.5802/jtnb.39 · Zbl 0732.11060 · doi:10.5802/jtnb.39
[11] ; Harris, Doc. Math., 393 (2006)
[12] 10.1007/978-1-4684-9390-0 · doi:10.1007/978-1-4684-9390-0
[13] ; Hida, Doc. Math., 465 (2006)
[14] 10.1007/s10114-008-6490-z · Zbl 1235.11055 · doi:10.1007/s10114-008-6490-z
[15] 10.1093/imrn/rnn151 · Zbl 1193.11103 · doi:10.1093/imrn/rnn151
[16] 10.4007/annals.2010.172.41 · Zbl 1223.11131 · doi:10.4007/annals.2010.172.41
[17] 10.1112/S0010437X10005257 · Zbl 1239.11120 · doi:10.1112/S0010437X10005257
[18] 10.1007/978-1-4614-6657-4 · Zbl 1284.11001 · doi:10.1007/978-1-4614-6657-4
[19] 10.1090/S0894-0347-2013-00762-6 · Zbl 1284.14033 · doi:10.1090/S0894-0347-2013-00762-6
[20] 10.24033/asens.1671 · Zbl 0778.11061 · doi:10.24033/asens.1671
[21] 10.1515/crelle-2012-0056 · Zbl 1294.11195 · doi:10.1515/crelle-2012-0056
[22] ; Hsieh, Doc. Math., 19, 709 (2014) · Zbl 1314.11034
[23] 10.1007/BF01390187 · Zbl 0417.12003 · doi:10.1007/BF01390187
[24] ; Katz, Algebraic surfaces. Lecture Notes in Math., 868, 138 (1981)
[25] 10.2307/1970507 · Zbl 0142.05402 · doi:10.2307/1970507
[26] 10.1515/9781400883943 · doi:10.1515/9781400883943
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.