×

Numerical simulation of sediment suspension and transport under plunging breaking waves. (English) Zbl 1390.76901

Summary: We perform a simulation-based study on the suspension and transport of sediment under a plunging wave breaker. Navier-Stokes equations for a multi-phase incompressible flow are solved using an in-house finite-difference code. The air-water interface is captured by using the coupled level-set and volume-of-fluid method. The convection-diffusion equation with a settling term for a passive scalar is solved to describe the transport of the sediment concentration. The pick-up function is used to address the sediment flux at the bottom. Five cases with different water depth and wave steepness have been simulated. Both instantaneous and statistical results on the sediment concentration are analyzed to investigate the processes of sediment suspension and transport. It is observed from the simulation results that during wave breaking, sediment is suspended due to the high shear stress at the water bottom. The wave breaking also induces an upward motion of water between two large scale counter-rotating vortices, which in turn transports the suspended sediment towards the water surface. Based on the analysis of the mass center of suspended sediment, the process of sediment transport under the plunging breaking wave is divided into the erosion stage, suspension stage, and transport stage. The effects of water depth and wave steepness on the bulk concentration of suspended sediment, bottom erosion and deposition fluxes, and the mass center of sediment are discussed. As the water depth decreases and as the wave steepness increases, more sediment is picked up during the wave breaking. The bed deformation is also predicted based on the transport equation of the bed elevation.

MSC:

76T20 Suspensions
76D05 Navier-Stokes equations for incompressible viscous fluids
76M20 Finite difference methods applied to problems in fluid mechanics

Software:

PETSc
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Horikawa, K., Coastal sediment processes, Annu Rev Fluid Mech, 13, 9-32, (1981) · Zbl 0492.76026
[2] Traykovski, P., Observation of wave orbital scale ripples and a nonequilibrium time-dependent model, J Geophys Res, 112, C6, C06026, (2007)
[3] van der Werf, J. J.; Doucette, J. S.; O’Donoghue, T.; Ribberink, J. S., Detailed measurements of velocities and suspended sand concentrations over full-scale ripples in regular oscillatory flow, J Geophys Res, 112, F2, F02012, (2007)
[4] Kimmoun, O.; Branger, H., A particle image velocimetry investigation on laboratory surf-zone breaking waves over a sloping beach, J Fluid Mech, 588, 353-397, (2007) · Zbl 1141.76313
[5] Nadaoka, K.; Hino, M.; Koyano, Y., Structure of the turbulent flow field under breaking waves in the surf zone, J Fluid Mech, 204, 359-387, (1989)
[6] Peregrine, D. H., Breaking waves on beaches, Annu Rev Fluid Mech, 15, 149-178, (1983)
[7] Battjes, J. A., Surf-zone dynamics, Annu Rev Fluid Mech, 20, 257-293, (1988)
[8] Banner, M. L.; Peregrine, D. H., Wave breaking in deep water, Annu Rev Fluid Mech, 25, 373-397, (1993)
[9] Melville, W. K., The role of surface-wave breaking in air-sea interaction, Annu Rev Fluid Mech, 28, 279-321, (1996)
[10] Kiger, K. T.; Duncan, J. H., Air-entrainment mechanisms in plunging jets and breaking waves, Annu Rev Fluid Mech, 44, 563-596, (2012) · Zbl 1352.76026
[11] Perlin, M.; Choi, W.; Tian, Z., Breaking waves in deep and intermediate waters, Annu Rev Fluid Mech, 45, 115-145, (2013) · Zbl 1359.76066
[12] Ting, F. C.K.; Kirby, J. T., Dynamics of surf-zone turbulence in a strong plunging breaker, Coast Eng, 24, 3-4, 177-204, (1995)
[13] Ting, F. C.K.; Kirby, J. T., Dynamics of surf-zone turbulence in a spilling breaker, Coast Eng, 27, 3-4, 131-160, (1996)
[14] Yu, Y.; Sternberg, R. W.; Beach, R. A., Kinematics of breaking waves and associated suspended sediment in the nearshore zone, Cont Shelf Res, 13, 11, 1219-1242, (1993)
[15] Beach, R. A.; Sternberg, R. W., Suspended-sediment transport in the surf zone: response to breaking waves, Cont Shelf Res, 16, 15, 1989-2003, (1996)
[16] Voulgaris, G.; Collins, M. B., Sediment resuspension on beaches: response to breaking waves, Mar Geol, 167, 1-2, 167-187, (2000)
[17] Nadaoka, K.; Ueno, S.; Igarashi, T., Sediment suspension due to large scale eddies in the surf zone, Coast Eng Proc, 1, 21, 1646-1660, (1988)
[18] Cox, D. T.; Kobayashi, N., Identification of intense, intermittent coherent motions under shoaling and breaking waves, J Geophys Res, 105, C6, 14223-14236, (2000)
[19] Harlow, F. H.; Welch, J. E., Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface, Phys Fluids, 8, 12, 2182-2189, (1965) · Zbl 1180.76043
[20] Miyata, H.; Nishimura, S.; Masuko, A., Finite difference simulation of nonlinear waves generated by ships of arbitrary three-dimensional configuration, J Comput Phys, 60, 3, 391-436, (1985) · Zbl 0573.76027
[21] Miyata, H., Finite-difference simulation of breaking waves, J Comput Phys, 65, 1, 179-214, (1986) · Zbl 0591.76024
[22] Osher, S.; Sethian, J. A., Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations, J Comput Phys, 79, 1, 12-49, (1988) · Zbl 0659.65132
[23] Sussman, M.; Smereka, P.; Osher, S., A level set approach for computing solutions to incompressible two-phase flow, J Comput Phys, 114, 1, 146-159, (1994) · Zbl 0808.76077
[24] Zhang, Y.; Zou, Q.; Greaves, D., Numerical simulation of free-surface flow using the level-set method with global mass correction, Int J Numer Meth Fluids, 63, 651-680, (2010) · Zbl 1423.76359
[25] Scardovelli, R.; Zaleski, S., Direct numerical simulation of free-surface and interfacial flow, Annu Rev Fluid Mech, 31, 567-603, (1999)
[26] López, J.; Hernández, J.; Gómez, P.; Faura, F., An improved PLIC-VOF method for tracking thin fluid structures in incompressible two-phase flows, J Comput Phys, 208, 1, 51-74, (2005) · Zbl 1115.76359
[27] Weymouth, G. D.; Yue, D. K.-P., Conservative volume-of-fluid method for free-surface simulations on Cartesian-grids, J Comput Phys, 229, 8, 2853-2865, (2010) · Zbl 1307.76064
[28] Sussman, M.; Puckett, E. G., A coupled level set and volume-of-fluid method for computing 3D and axisymmetric incompressible two-phase flows, J Comput Phys, 162, 2, 301-337, (2000) · Zbl 0977.76071
[29] Lv, X.; Zou, Q.; Zhao, Y.; Reeve, D., A novel coupled level set and volume of fluid method for sharp interface capturing on 3D tetrahedral grids, J Comput Phys, 229, 7, 2573-2604, (2010) · Zbl 1423.76303
[30] Liu, Y., Numerical study of strong free surface flow and breaking waves, (2012), The Johns Hopkins University, Phd thesis
[31] Hsu, T.-J., A two-phase flow approach for sediment transport, (2002), Cornell University, Phd thesis
[32] Hsu, T.-J.; Jenkins, J. T.; Liu, P. L.-F., On two-phase sediment transport: dilute flow, J Geophys Res, 108, C3, 3057, (2003)
[33] Hsu, T.-J.; Hanes, D. M., Effects of wave shape on sheet flow sediment transport, J Geophys Res, 109, C5, C05025, (2004)
[34] Hsu, T.-J.; Jenkins, J. T.; Liu, P. L.-F., On two-phase sediment transport: sheet flow of massive particles, Proc R Soc London Ser-A, 460, 2223-2250, (2004) · Zbl 1329.76358
[35] Lin, P.; Liu, P. L.-F., A numerical study of breaking waves in the surf zone, J Fluid Mech, 359, 239-264, (1998) · Zbl 0916.76009
[36] Hsu, T.-J.; Liu, P. L.-F., Toward modeling turbulent suspension of sand in the nearshore, J Geophys Res, 109, C6, C06018, (2004)
[37] Ontowirjo, B.; Mano, A., A turbulent and suspended sediment transport model for plunging breakers, Coast Eng J, 50, 3, 349-367, (2008)
[38] Yost, S. A.; Katopodes, N. D., 3D numerical modeling of cohesive sediments, (Spaulding, M.; Cheng, R., Estuarine and coastal modeling, (1996), ASCE New York)
[39] Wu, Y.; Falconer, R. A.; Uncles, R. J., Modelling of water flows cohesive sediment fluxes in the humber estuary, UK, Mar Pollut Bull, 37, 3-7, 182-189, (1998)
[40] Li, Z.; Davies, A. G., Towards predicting sediment transport in combined wave-current flow, J Waterw Port Coast Ocean Eng, 122, 4, 157-164, (1996)
[41] Zedler, E. A.; Street, L. R., Large-eddy simulation of sediment transport: currents over ripples, J Hydraul Eng, 127, 6, 444-452, (2001)
[42] Zedler, E. A.; Street, L. R., Sediment transport over ripples in oscillatory flow, J Hydraul Eng, 132, 2, 180-193, (2006)
[43] van Rijn, L. C., Sediment Pick-up functions, J Hydraul Eng, 110, 10, 1494-1502, (1984)
[44] Chou, Y.-J.; Fringer, O. B., Modeling dilute sediment suspension using large-eddy simulation with a dynamic mixed model, Phys Fluids, 20, 11, 115103, (2008) · Zbl 1182.76155
[45] Chou, Y.-J.; Fringer, O. B., A model for the simulation of coupled flow-bed form evolution in turbulent flows, J Geophys Res, 115, C10, C10041, (2010)
[46] Suzuki, T.; Okayasu, A.; Shibayama, T., A numerical study of intermittent sediment concentration under breaking waves in the surf zone, Coast Eng, 54, 5, 433-444, (2007)
[47] Zhou, Z.; Hsu, T.-J.; Cox, D.; Liu, X., Large-eddy simulation of wave-breaking induced turbulent coherent structures and suspended sediment transpor on a barred beach, J Geophys Res, 122, 1, 207-235, (2017)
[48] Kim, J.; Moin, P., Application of a fractional-step method to incompressible Navier-Stokes equation, J Comput Phys, 59, 2, 308-323, (1985) · Zbl 0582.76038
[49] Shu, C.-W.; Osher, S., Efficient implementation of essentially non-oscillatory shock-capturing schemes, II, J Comput Phys, 83, 1, 32-78, (1989) · Zbl 0674.65061
[50] Zhu, J., A low-diffusive and oscillation-free convection scheme, Comm Appl Numer Meth, 7, 3, 225-232, (1991) · Zbl 0724.76062
[51] Icardi, M.; Gavi, E.; Marchisio, D. L.; Olsen, M. G.; Fox, R. O.; Lakehal, D., Validation of LES predictions for turbulent flow in a confined impinging jets reactor, Appl Math Model, 35, 4, 1591-1602, (2011) · Zbl 1217.76034
[52] Amoudry, L.; Hsu, T.-J.; Liu, P. L.-F., Schmidt number and near-bed boundary condition effects on a two-phase dilute sediment transport model, J Geophys Res, 110, C9, C09003, (2005)
[53] Chen, G.; Kharif, C.; Zaleski, S.; Li, J., Two-dimensional Navier-Stokes simulation of breaking waves, Phys Fluids, 11, 1, 121-133, (1999) · Zbl 1147.76356
[54] Lubin, P.; Vincent, S.; Caltagirone, J. P.; Abadie, S., Fully three-dimensional direct numerical simulation of a plunging breaker, Comptes Rendus Mécanique, 331, 495-501, (2003) · Zbl 1177.76237
[55] Song, C.; Sirviente, A. I., A numerical study of breaking waves, Phys Fluids, 16, 7, 2649-2667, (2004) · Zbl 1186.76493
[56] Lubin, P.; Vincent, S.; Abadie, S.; Caltagirone, J. P., Three-dimensional large eddy simulation of air entrainment under plunging breaking waves, Coast Eng, 53, 8, 631-655, (2006)
[57] Iafrati, A., Numerical study of the effects of the breaking intensity on wave breaking flows, J Fluid Mech, 622, 371-411, (2009) · Zbl 1165.76327
[58] Hu, Y.; Guo, X.; Lu, X.; Liu, Y.; Dalrymple, R. A.; Shen, L., Idealized numerical simulation of breaking water wave propagating over a viscous mud layer, Phys Fluids, 24, 11, 112104, (2012)
[59] Deike, L.; Popinet, S.; Melville, W. K., Capillary effects on wave breaking, J Fluid Mech, 769, 541-569, (2015)
[60] Yakhot, V.; Orszag, S. A., Renormalization group analysis of turbulence. i. basic theory, J Sci Comput, 1, 1, 3-51, (1986) · Zbl 0648.76040
[61] Watanabe, Y.; Saeki, H.; Hosking, R. J., Three-dimensional vortex structures under breaking waves, J Fluid Mech, 545, 291-328, (2005) · Zbl 1085.76511
[62] Derakhti, M.; Kirby, J. T., Bubble entrainment and liquid-bubble interaction under unsteady breaking waves, J Fluid Mech, 761, 464-506, (2014) · Zbl 1306.76049
[63] Longuet-Higgins, M. S., Capillary rollers and bores, J Fluid Mech, 240, 659-679, (1992) · Zbl 0759.76021
[64] Melville, W. K.; Veron, F.; White, C. J., The velocity field under breaking waves: coherent structures and turbulence, J Fluid Mech, 454, 203-233, (2002) · Zbl 0987.76507
[65] Bonmarin, P., Geometric properties of deep-water breaking waves, J Fluid Mech, 209, 405-433, (1989)
[66] Rapp, R. J.; Melville, W. K., Laboratory measurements of deep-water breaking waves, Proc R Soc London Ser-A, 331, 735-800, (1990)
[67] Lamarre, E.; Melville, W. K., Air entrainment and dissipation in breaking waves, Nature, 351, 469-472, (1991)
[68] Imran, J.; Parker, G.; Katopodes, N., A numerical model of channel inception on submarine fans, J Geophys Res, 103, C1, 1219-1238, (1998)
[69] Wu, W.; Wang, S. S.Y., Formulas for sediment porosity and settling velocity, J Hydraul Eng, 132, 8, 858-862, (2006)
[70] Traykovski, P.; Hay, A. E.; Irish, J. D.; Lynch, J. F., Geometry, migration, and evolution of wave orbital ripples at LEO-15, J Geophys Res, 104, C1, 1505-1524, (1999)
[71] Zhou, Z.; Sangermano, J.; Hsu, T.-J.; Ting, F. C.K., A numerical investigation of wave-breaking-induced turbulent coherent structure under a solitary wave, J Geophys Res, 119, 6952-6973, (2014)
[72] Balay, S.; Gropp, W. D.; McInnes, L. C.; Smith, B. F., Efficient management of parallelism in object oriented numerical software libraries, Modern software tools in scientific computing, 163-202, (1999), Birkhäuser Boston · Zbl 0882.65154
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.