×

Modeling shallow avalanche onset over complex basal topography. (English) Zbl 1331.74063

Summary: This paper deals with modeling of the onset of a shallow avalanche (soils, snow or other geomaterials) over various bottom topologies (mountains, valleys,…). In order to do that, we use the shallow visco-plastic model with topography, developed in [the first author, “Viscoplastic shallow flow equations with topography”, J. Non-Newton. Fluid Mech. 193, 116–128 (2013; doi:10.1016/j.jnnfm.2012.09.009)], and we introduce a simple criterion to distinguish if an avalanche occurs or not. This criterion, relating the yield limit (material resistance) to the distribution of the external forces, is deduced from an optimization problem, called limit load analysis. The plastic dissipation functional which is involved in the limit load problem is non smooth and non coercive in the classical Sobolev spaces. To prove the existence of an onset velocity field (collapse flow) the appropriate functional space consists of bounded tangential deformation functions. We propose therefore a numerical strategy to solve the limit load problem and to get the onset flow field. A mesh free method, called the discontinuous velocity domain splitting (DVDS), is adapted here. The limit load problem is thus reduced to the minimization of a shape dependent functional. The discontinuous collapse flow velocity field is associated to a sub-domain and a rigid flow. With a level set of a Fourier function we give a description of the sub-domains and then we use genetic algorithms to solve the resulted non convex and non smooth global optimization problem. Finally, we illustrate the proposed numerical approach by solving several safety factor problems.

MSC:

74G50 Saint-Venant’s principle
74C10 Small-strain, rate-dependent theories of plasticity (including theories of viscoplasticity)
74S30 Other numerical methods in solid mechanics (MSC2010)
90C26 Nonconvex programming, global optimization
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Ancey, Ch.: Plasticity and geophysical flows: A review. J. Non-Newtonian Fluid Mech. 142, 4-35 (2007) · Zbl 1143.76315 · doi:10.1016/j.jnnfm.2006.05.005
[2] Balmforth, N.J., Burbidge, A.S., Craster, R.V., Salzig, J., Shen, A.: Viscoplastic models of isothermal lava domes. J. Fluid Mech. 403, 37-65 (2000) · Zbl 0957.76003 · doi:10.1017/S0022112099006916
[3] Balmforth, N.J., Craster, R.V., Sassi, R.: Shallow viscoplastic flow on an inclined plane. J. Fluid Mech. 470, 1-29 (2002) · Zbl 1026.76002 · doi:10.1017/S0022112002001660
[4] Balmforth, N.J., Craster, R.V., Rust, A.C., Sassi, R.: Viscoplastic flow over an inclined surface. J. Non-Newtonian Fluid Mech. 142, 219-243 (2007) · Zbl 1108.76005 · doi:10.1016/j.jnnfm.2006.07.013
[5] Bingham, E.C. Fluidity and Plasticity. Mc Graw-Hill, New-York (1992)
[6] Bouchut, F., Mangeney-Castelnau, A., Perthame, B., Vilotte, J.-P.: A new model of Saint- Venant and Savage-Hutter type for gravity driven shallow water flows. C. R. Acad. Sci.Paris 336, 531-536 (2003) · Zbl 1044.35056 · doi:10.1016/S1631-073X(03)00117-1
[7] Bouchut, F., Fernandez-Nieto, E., Mangeney, A., Lagre, P.Y.: On new erosion models of Savage-Hutter type for avalanches. Acta Mecha. 199, 198-208 (2008) · Zbl 1152.76053 · doi:10.1007/s00707-007-0534-9
[8] Christiansen, E.: Limit analyis of collapse states. In: Handbook of Numerical Analysis, vol. 4, P.G. Ciarlet and J.L. Lions, eds., Noth Holland, Amsterdam, 193-312 (1996) · Zbl 0880.73063
[9] Drucker, D.C., Prager, W.: Soil mechanics and plastic analysis of limit design. Q. Appl. Math. 10, 157-175 (1952) · Zbl 0047.43202
[10] Drucker, D.C., Prager, W., Greenberg, H.J.: Extended limit design theorems for continuos media. Q. Appl. Math. 9, 381-389 (1952) · Zbl 0047.43201
[11] Gray, J.M.N.T., Wieland, M., Hunter, K.: Gravity driven free surface flow of granular avalanches over complex basal topography, Proc. R. Soc. London, A. Math. Phys. Eng. Sci. 455, 1841-1874 (1999) · Zbl 0951.76091 · doi:10.1098/rspa.1999.0383
[12] Hassani, R., Ionescu, I.R., Lachand-Robert, T.: Shape optimization and supremal functionals in landslides modelling. Math. Model. Numer. anal. 36, 1013-1026 (2005)
[13] Ionescu, I.R.: Onset and dynamic shallow flow of a viscoplastic fluid on a plane slope. J. Non-Newtonian Fluid Mech. 165, 1328-1341 (2010) · Zbl 1274.76033 · doi:10.1016/j.jnnfm.2010.06.016
[14] Ionescu, I.R.: Viscoplastic shallow flow equations with topography. J. Non-Newtonian Fluid Mech. 193, 11-128 (2013) · doi:10.1016/j.jnnfm.2012.09.009
[15] Ionescu, I.R., Lachand-Robert, T.: Generalized Cheeger sets related to landslides. Calc. Var. and PDE 3, 227-249 (2005) · Zbl 1062.49036 · doi:10.1007/s00526-004-0300-y
[16] Ionescu, I.R., Lupaşcu, O.: Onset of a dense avalanche on a plane slope submitted (2014) · Zbl 1413.76010
[17] Ionescu, I.R., Oudet, E.: Discontinuous velocity domain splitting method in limit load analysis. Int. J. Solids Struct. 47, 1459-1468 (2010) · Zbl 1193.74015 · doi:10.1016/j.ijsolstr.2010.02.012
[18] Jop, P., Forterre, Y., Pouliquen, O.: A constitutive law for dense granular flows. Nature 441, 727-730 (2006) · doi:10.1038/nature04801
[19] Keller, J.B.: Shallow-water theory for arbitrary slopes of the bottom. J. Fluid Mech. 489, 345-348 (2003) · Zbl 1055.76004 · doi:10.1017/S0022112003005342
[20] Matthies, H.; Strang, G.; Christiansen, E.; Glowinski, R. (ed.); Rodin, E. (ed.); Zienkiewicz, OC (ed.), The saddle point of a differential program (1979), New York
[21] Mageney-Castelneau, A., Villote, J.P., Bristeau, M.O., Perthame, B., Bochut, F., Simeoni, C., Yernei, S.: Numerical modeling of avalanches based on Saint-Venant equations using a kinetic scheme. J. Geophys. Res. B11(2527), 108 (2003)
[22] Mageney-Castelneau, A., Bochut, F., Villote, J.P., Lajeunesse, E., Aubertin, A., Pirulli, M.: On the Saint-Venant equations to simulate the spreading of a granular mass. J. Geophys. Res. 110 B9, B09103 (2005)
[23] Pardalos, P.M., Romeijn, E.H. (eds.): Handbook of global optimization, vol. 2. Nonconvex Optimization and its Applications, 62. Kluwer Academic Publishers, Dordrecht (2002) · Zbl 0991.00017
[24] Pudasaini, S.P., Hutter, K.: Avalanche Dynamics - Dynamics of Rapid Flows of Dense Granular Avalanches. Springer, Berlin (2007)
[25] Pudasaini, S.P., Hutter, K.: Rapid shear flows of dry granular masses down curved and twisted channels. J. Fluid Mech. 495, 193-208 (2003) · Zbl 1054.76083 · doi:10.1017/S0022112003006141
[26] Pudasaini, S.P., Hutter, K., Eckart, W.: Gravity driven rapid shear flows of dry granular masses in topographies with ortogonal and non-orthogonal metrics. Dynamic response of granular and porous materials under large and catastrophic deformation, edited by K. Hunter and N. Kircher, Lecture Notes in Applied and computational mechanics 11, Springer Berlin, 43-8 (2003) · Zbl 1229.74022
[27] Suquet, P.: Un espace fonctionnel pour les équations de la plasticité. Math. Ann. Fac. Sci. Toulouse, V. Sér. Math. 1, 77-87 (1979) · Zbl 0405.46027 · doi:10.5802/afst.531
[28] Temam, R.: Problèmes Mathématiques en Plasticité. Gauthiers-Villars, Paris (1983) · Zbl 0547.73026
[29] Temam, R., Strang, G.: Functions of bounded deformation. Arch. Ration. Mech.Anal. 75, 7-21 (1980) · Zbl 0472.73031
[30] Savage, S.B., Hutter, K.: The motion of a finite mass of granular material down a rough incline. J. of Fluid Mech. 199, 177-215 (1989) · Zbl 0659.76044 · doi:10.1017/S0022112089000340
[31] Savage, S.B., Hutter, K.: The dynamics of granular materials from initiation to runout. Acta Mechanica 86, 201-223 (1991) · Zbl 0732.73053 · doi:10.1007/BF01175958
[32] Wang, Y., Hutter, K., Pudasaini, S.P.: The Savage-Hutter theory: a system of partial differential equations for avalanche flow of snow, debris, and mud. ZAMM 84, 507-527 (2004) · Zbl 1149.74323 · doi:10.1002/zamm.200310123
[33] Wieland, M., Gray, J.M.N.T., Hunter, K.: Channelized free surfaces flow of cohesion less granular avalanches in a chute with shallow lateral curvature. J. Fluid Mech. 392, 73-100 (1999) · Zbl 0938.76588 · doi:10.1017/S0022112099005467
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.