×

A mathematical model for three-phase-lag dipolar thermoelastic bodies. (English) Zbl 1368.35261

The authors derive equations for three-phase-lag dipolar thermoelastic solids and prove the uniqueness of the solution to the boundary-value problem and the reciprocal theorem and propose a variational principle. The uniqueness is proved using a dissipation inequality.

MSC:

35Q79 PDEs in connection with classical thermodynamics and heat transfer
74B05 Classical linear elasticity
35Q74 PDEs in connection with mechanics of deformable solids
74F05 Thermal effects in solid mechanics
35A15 Variational methods applied to PDEs
35A02 Uniqueness problems for PDEs: global uniqueness, local uniqueness, non-uniqueness
80A10 Classical and relativistic thermodynamics
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Lord, H, Shulman, Y: A generalized dynamical theory of thermoelasticity. J. Mech. Phys. Solids 15, 299-309 (1967) · Zbl 0156.22702 · doi:10.1016/0022-5096(67)90024-5
[2] Green, AE, Naghdi, PM: Re-examination of the basic postulates of thermomechanics. Proc. R. Soc. Lond. A 432, 1171-1194 (1991) · Zbl 0726.73004 · doi:10.1098/rspa.1991.0012
[3] Green, AE, Naghdi, PM: On undamped heat wave in elastic solids. J. Therm. Stresses 15(2), 253-264 (1992) · doi:10.1080/01495739208946136
[4] Green, AE, Naghdi, PM: Thermoelasticity without energy dissipation. J. Elast. 9, 1-8 (1993) · Zbl 0784.73009 · doi:10.1007/BF00040975
[5] Choudhuri, SKR: On a thermoelastic three-phase-lag model. J. Therm. Stresses 30(3), 231-238 (2007) · doi:10.1080/01495730601130919
[6] Tzou, DY: A unified approach for heat conduction from macro to microscales. ASME J. Heat Transfer 117, 8-16 (1995) · doi:10.1115/1.2822329
[7] Kumar, R, Mukhopadhyay, S: Effects of three-phase-lag on generalized thermoelasticity for an infinite medium with a cylindrical cavity. J. Therm. Stresses 32(11), 1149-1165 (2009) · doi:10.1080/01495730903249185
[8] Kar, A, Kanoria, M: Generalized thermoelastic functionally graded orthotropic hollow sphere under thermal shock with three-phase-lag effect. Eur. J. Mech. A, Solids 28, 757-767 (2009) · Zbl 1167.74391 · doi:10.1016/j.euromechsol.2009.01.003
[9] Achenbach, JD: Reciprocity in Elastodynamics. Cambridge University Press, Cambridge (2003) · Zbl 1060.74002
[10] El-Karamany, AS, Ezzat, MA: Uniqueness and reciprocal theorems in linear micropolar electro-magnetic thermoelasticity with two relaxation times. Mech. Time-Depend. Mater. 13, 93-115 (2009) · doi:10.1007/s11043-008-9068-3
[11] Abbas, I: Generalized thermoelastic interaction in functional graded material with fractional order three-phase lag heat transfer. J. Cent. South Univ. Technol. 22(5), 1606-1613 (2015) · doi:10.1007/s11771-015-2677-5
[12] Othman, M, et al.: Effect of rotation and initial stress on generalized micropolar thermoelastic medium with three-phase-lag. J. Comput. Theor. Nanosci. 12(9), 2030-2040 (2015) · doi:10.1166/jctn.2015.3983
[13] Carlson, DE; Truesdell, C. (ed.), Linear thermoelasticity, No. VI a/2, 297-346 (1972), Berlin
[14] Lebon, G.; Lebon, G. (ed.); Perzyna, P. (ed.), Variational principles in thermomechanics (1980), Wien-New York · Zbl 0474.73001 · doi:10.1007/978-3-7091-3351-4
[15] Eringen, AC: Theory of thermo-microstretch elastic solids. Int. J. Eng. Sci. 28, 1291-1301 (1990) · Zbl 0718.73014 · doi:10.1016/0020-7225(90)90076-U
[16] Eringen, AC: Microcontinuum Field Theories. Springer, New York (1999) · Zbl 0953.74002 · doi:10.1007/978-1-4612-0555-5
[17] Iesan, D, Ciarletta, M: Non-Classical Elastic Solids. Longman Scientific and Technical, Harlow, Essex and John Wiley & Sons, Inc., New York (1993) · Zbl 0790.73002
[18] Sharma, K, Marin, M: Effect of distinct conductive and thermodynamic temperatures on the reflection of plane waves in micropolar elastic half-space. Sci. Bull. “Politeh.” Univ. Buchar., Ser. A, Appl. Math. Phys. 75(2), 121-132 (2013) · Zbl 1289.74028
[19] Marin, M: A domain of influence theorem for microstretch elastic materials. Nonlinear Anal., Real World Appl. 11(5), 3446-3452 (2010) · Zbl 1396.74026 · doi:10.1016/j.nonrwa.2009.12.005
[20] Marin, M, Baleanu, D, Vlase, S: Effect of microtemperatures for micropolar thermoelastic bodies. Struct. Eng. Mech. 61(3), 381-387 (2017)
[21] Marin, M, Lupu, M: On harmonic vibrations in thermoelasticity of micropolar bodies. J. Vib. Control 4(5), 507-518 (1998) · Zbl 0949.74502 · doi:10.1177/107754639800400501
[22] Straughan, B: Heat Waves. Applied Mathematical Sciences, vol. 177. Springer, New York (2011) · Zbl 1232.80001
[23] Sharma, K, Marin, M: Reflection and transmission of waves from imperfect boundary between two heat conducting micropolar thermoelastic solids. An. Ştiinţ. Univ. ‘Ovidius’ Constanţa, Ser. Mat. 22(2), 151-175 (2014) · Zbl 1313.74014
[24] Marin, M, Baleanu, D: On vibrations in thermoelasticity without energy dissipation for micropolar bodies. Bound. Value Probl. 2016, Article ID 111 (2016) · Zbl 1344.35145 · doi:10.1186/s13661-016-0620-9
[25] Mindlin, RD: Micro-structure in linear elasticity. Arch. Ration. Mech. Anal. 16, 51-78 (1964) · Zbl 0119.40302 · doi:10.1007/BF00248490
[26] Green, AE, Rivlin, RS: Multipolar continuum mechanics. Arch. Ration. Mech. Anal. 17, 113-147 (1964) · Zbl 0133.17604 · doi:10.1007/BF00253051
[27] Fried, E, Gurtin, ME: Thermomechanics of the interface between a body and its environment. Contin. Mech. Thermodyn. 19(5), 253-271 (2007) · Zbl 1160.74303 · doi:10.1007/s00161-007-0053-x
[28] Gurtin, ME: Variational principles for linear initial-value problems. Q. Appl. Math. 22, 252-256 (1964) · Zbl 0173.37602 · doi:10.1090/qam/99951
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.