×

On implicit active constraints in linear semi-infinite programs with unbounded coefficients. (English) Zbl 1220.90142

Summary: The concept of implicit active constraints at a given point provides useful local information about the solution set of linear semi-infinite systems and about the optimal set in linear semi-infinite programming provided the set of gradient vectors of the constraints is bounded, commonly under the additional assumption that there exists some strong Slater point. This paper shows that the mentioned global boundedness condition can be replaced by a weaker local condition (LUB) based on locally active constraints (active in a ball of small radius whose center is some nominal point), providing geometric information about the solution set and Karush-Kuhn-Tucker type conditions for the optimal solution to be strongly unique. The maintaining of the latter property under sufficiently small perturbations of all the data is also analyzed, giving a characterization of its stability with respect to these perturbations in terms of the strong Slater condition, the so-called Extended-Nürnberger condition, and the LUB condition.

MSC:

90C34 Semi-infinite programming
90C05 Linear programming
PDFBibTeX XMLCite
Full Text: DOI Link

References:

[1] Aubin, J.P., Frankowska, H.: Set-Valued Analysis. Birkhäuser, Boston (1990) · Zbl 0713.49021
[2] Bank, B., Guddat, J., Klatte, D., Kummer, B., Tammer, K.: Non-Linear Parametric Optimization. Birkhäuser, Basel (1983) · Zbl 0502.49002
[3] Cánovas, M.J., Klatte, D., López, M.A., Parra, J.: Metric regularity in convex semi-infinite optimization under canonical perturbations. SIAM J. Optim. 18, 717–732 (2007) · Zbl 1211.90256 · doi:10.1137/060658345
[4] Dontchev, A.L., Zolezzi, T.: Well-Posed Optimization Problems. Springer, Berlin (1993) · Zbl 0797.49001
[5] Fajardo, M.D., López, M.A.: Locally Farkas-Minkowski systems in convex semi-infinite programming. J. Optim. Theory Appl. 103, 313–335 (1999) · Zbl 0945.90069 · doi:10.1023/A:1021700702376
[6] Goberna, M.A., López, M.A.: Linear Semi-Infinite Optimization. Wiley, New York (1998) · Zbl 0909.90257
[7] Goberna, M.A., López, M.A., Todorov, M.I.: Stability theory for linear inequality systems. SIAM J. Matrix Anal. Appl. 17, 730–743 (1996) · Zbl 0864.15009 · doi:10.1137/S0895479895259766
[8] Goberna, M.A., López, M.A., Todorov, M.I.: Extended active constraints in linear optimization with applications. SIAM J. Optim. 14, 608–619 (2003) · Zbl 1046.90039 · doi:10.1137/S1052623402401579
[9] Goberna, M.A., López, M.A., Todorov, M.I.: A sup-function approach to linear semi-infinite optimization. J. Math. Sci. 116, 3359–3368 (2003) · Zbl 1081.90062 · doi:10.1023/A:1024086422155
[10] Goberna, M.A., López, M.A., Todorov, M.I.: A generic result in linear semi-infinite optimization. Appl. Math. Optim. 48, 181–193 (2003) · Zbl 1137.90685
[11] Helbig, S., Todorov, M.I.: Unicity results for general linear semi-infinite optimization problems using a new concept of active constraints. Appl. Math. Optim. 38, 21–43 (1998) · Zbl 0907.90266
[12] Hettich, R., Zencke, P.: Numerische Methoden der Approximation und Semi-infiniten Optimierung. Teubner, Stuttgart (1982) · Zbl 0481.65033
[13] Lucchetti, R.: Convexity and Well-Posed Problems. Springer, New York (2006) · Zbl 1106.49001
[14] Nürnberger, G.: Unicity in semi-infinite optimization. In: Brosowski, B., Deutsch, F. (eds.) Parametric Optimization and Approximation, pp. 231–247. Birkhäuser, Basel (1985)
[15] Rockafellar, R.T.: Convex Analysis. Princeton University Press, Princeton (1970) · Zbl 0193.18401
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.