×

The geometric model-based patient-specific simulations of turbulent aortic valve flows. (English) Zbl 1391.76900

Summary: This paper presents the patient-specific simulations of the aortic valve based on the proposed geometric model. A structural analysis is performed by using the finite element method to determine the stress-strain state of the aortic valve. The study is focused on the investigation of various turbulence models crucial for the appropriate description of the flow in the deceleration phase, following the peak systole. A comparative study of the flow solution without a turbulence model and the numerical results obtained by using various turbulence models is also performed. The results yielded by the shear-stress transport \(k\)-\(\omega\) model supplemented with the intermittency transition equation most closely match those of numerical simulations without a turbulence model.

MSC:

76Z05 Physiological flows
76F60 \(k\)-\(\varepsilon\) modeling in turbulence
76M10 Finite element methods applied to problems in fluid mechanics
76M12 Finite volume methods applied to problems in fluid mechanics
92C35 Physiological flow
PDFBibTeX XMLCite
Full Text: Link

References:

[1] Eurostat, Eurostat regional yearbook 2014, Publications Office of the European Union, 2014; doi: 10.2785/54486.
[2] A. Tandon, P.A. Grayburn, Imaging of low-gradient severe aortic stenosis, JACC: Cardiovascular Imaging, 6, 184-195, 2013; doi: 10.1016/j.jcmg.2012.11.005.
[3] S. Orwat, G. Kaleschke, G. Kerckhoff, R. Radke, H. Baumgartner, Low flow, low gradient severe aortic stenosis: diagnosis, treatment and prognosis, EuroIntervention, 9, Suppl: S38-42, 2013; doi: 10.4244/EIJV9SSA8.
[4] J.G. Dumesnil, P. Pibarot, B. Carabello, Paradoxical low flow and/or low gradient severe aortic stenosis despite preserved left ventricular ejection fraction: implications for diagnosis and treatment, European Heart Journal, 31, 281-289, 2010; doi: 10.1093/eurheartj/ehp361.
[5] S. Herrmann, S. Störk, M. Niemann, V. Lange, J.M. Strotmann, S. Frantz, M. Beer, S. Gattenlöhner, W. Voelker, G. Ertl, F. Weidemann, Low-gradient aortic valve stenosis: myocardial fibrosis and its influence on function and outcome, Journal of the American College of Cardiology, 58, 402-412, 2011; doi: 10.1016/ j.jacc.2011.02.059.
[6] E. Sirois, Q. Wang, W. Sun, Fluid simulation of a transcatheter aortic valve deployment into a patient-specific aortic root, Cardiovascular Engineering and Technology, 2, 186-195, 2011; doi:10.1007/s13239-011-0037-7. 342E. Stupak et al.
[7] J. De Hart, G.W.M. Peters. P.J.G. Schreurs, F.P.T. Baaijens, A two-dimensional fluid-structure interaction model of the aortic value, Journal of Biomechanics, 33, 1079- 1088, 2000.
[8] M.A. Nicosia, R. P. Cochran, D.R. Einstein, C. J. Rutland, K.S. Kunzelman, A coupled fluid-structure finite element model of the aortic valve and root, The Journal of Heart Valve Disease, 12, 781-789, 2003.
[9] B. Su, L. Zhong, X.-K. Wang, J.-M. Zhang, R.S. Tan, J.C. Allen, S.K. Tan, S. Kim, H.L. Leo, Numerical simulation of patient-specific left ventricular model with both mitral and aortic valves by FSI approach, Computer Methods and Programs in Biomedicine, 113, 474-482, 2014; doi: 10.1016/j.cmpb.2013.11.009.
[10] G.P. Guruswamy, C. Byun, Fluid-structural interactions using Navier-Stokes flow equations coupled with shell finite element structures, AIAA Paper, 93, 3087, 1993; doi: 10.2514/6.1993-3087.
[11] R. Roszak, P. Posadzy, W. Stankiewicz, M. Morzyński, Fluid-structure interaction for large scale complex geometry and non-linear properties of structure, Archives of Mechanics, 61, 3-27, 2009. · Zbl 1273.74086
[12] Y. Bazilevs, J.R. Gohean, T.J.R. Hughes, R.D. Moser, Y. Zhang, Patient-specific isogeometric fluid-structure interaction analysis of thoracic aortic blood flow due to implantation of the Jarvik 2000 left ventricular assist device, Computer Methods in Applied Mechanics and Engineering, 198, 3534-3550, 2009; doi: 10.1016/j.cma.2009.04.015. · Zbl 1229.74096
[13] A. Quarteroni, T. Lassila, S. Rossi, R. Ruiz-Baier, Integrated heart - Coupling multiscale and multiphysics models for the simulation of the cardiac function, Computer Methods in Applied Mechanics and Engineering, 314, 345-407, 2017; doi: 10.1016/j.cma.2016.05.031. · Zbl 1439.74208
[14] Y.C. Fung, Biomechanics: Mechanical Properties of Living Tissues, Springer, New York, 1993.
[15] L. Tumonis, R. Kačianauskas, A. Kačeniauskas, M. Schneider, The transient behavior of rails used in electromagnetic railguns: numerical investigations at constant The geometric model-based patient-specific simulations. . .343
[16] H. Reul, A. Vahlbruch, M. Giersiepen, Th. Schmitz-Rode, V. Hirtz, S. Effert, The geometry of the aortic root in health, at valve disease and after valve replacement, Journal of Biomechanics, 23, 181-183, 1990; doi: 10.1016/0021-9290(90)90351-3.
[17] M. Thubrikar, The Aortic Valve, CRC Press, Inc. Boca Raton, 1990.
[18] M.R. Labrosse, C.J. Beller, F. Robicsek, M.J. Thubrikar, Geometric modeling of functional trileaflet aortic valves: Development and clinical applications, Journal of Biomechanics, 39, 2665-2672, 2006; doi: 10.1016/j.jbiomech.2005.08.012.
[19] T.E. Claiborne, J. Sheriff, M. Kuetting, U. Steinseifer, M.J. Slepian, D. Bluestein, In vitro evaluation of a novel hemodynamically optimized trileaflet polymeric prosthetic heart valve, Journal of Biomechanical Engineering, 135, 2013; doi: 10.1115/1.4023235.
[20] J.S. Rankin, A.F. Dalley, P.S. Crooke, R.H. Anderson, A “hemispherical” model of aortic valvar geometry, Journal of Heart Valve Disease, 17, 179-186, 2008.
[21] R. Haj-Ali, G. Marom, S. Ben Zekry, M. Rosenfeld, E. Raanani, A general three-dimensional parametric geometry of the native aortic valve and root for biomechanical modeling, Journal of Biomechanics, 45, 2392-2397, 2012; doi: 10.1016/j.jbiomech. 2012.07.017.
[22] G. Marom, H.-S. Kim, M. Rosenfeld, E. Raanani, R. Haj-Ali, Fully coupled fluidstructure interaction model of congenital bicuspid aortic valves: effect of asymmetry on hemodynamics, Medical and Biological Engineering and Computing, 51, 839-848, 2013; doi: 10.1007/s11517-013-1055-4.
[23] D. Bluestein, S. Einav, Techniques in the stability analysis of pulsatile flow through heart valves, [in:] Biomechanical Systems Techniques and Applications, Vol. II: Cardiovascular Techniques, C. Leondes [Ed.], CRC Press, 2000; doi: 10.1201/9781420049534.CH-04.
[24] C. Kiris, D. Kwak, S. Rogers, I.-D. Chang, Computational approach for probing the flow through artificial heart devices, Journal of Biomechanical Engineering, 119, 452-460, 1997; doi: 10.1115/1.2798293. 344E. Stupak et al.
[25] F. Auricchio, A. Ferrara, S. Morganti, Comparison and critical analysis of invariant-based models with respect to their ability in fitting human aortic valve data, Annals of Solid and Structural Mechanics, 4, 1-14, 2012; doi: 10.1007/s12356-012-0028-x.
[26] G.A. Holzapfel, R.W. Ogden, Constitutive modelling of arteries, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 466, 1551-1597, 2010; doi: 10.1098/rspa.2010.0058. · Zbl 1197.74075
[27] A. Gilmanov, H. Stolarski, F. Sotiropoulos, Non-linear rotation-free shell finiteelement models for aortic heart valves, Journal of Biomechanics, 50, 56-62, 2017; doi: 10.1016/j.jbiomech.2016.11.031.
[28] G. Marom, M. Peleg, R. Halevi, M. Rosenfeld, E. Raanani, A. Hamdan, R. Haj-Ali, Fluid-structure interaction model of aortic valve with porcine-specific collagen fiber alignment in the cusps, Journal of Biomechanical Engineering, 135, 2013.
[29] K. Cao, M. Bukač, P. Sucosky, Three-dimensional macro-scale assessment of regional and temporal wall shear stress characteristics on aortic valve leaflets, Computer Methods in Biomechanics and Biomedical Engineering, 19, 603-613, 2016; doi: http://dx.doi.org/10.1080/10255842.2015.1052419.
[30] A. Joda, Z. Jin, A. Haverich, J. Summers, S. Korossis, Multiphysics simulation of the effect of leaflet thickness inhomogeneity and material anisotropy on the stressstrain distribution on the aortic valve, Journal of Biomechanics, 49, 2502-2512, 2016; doi: 10.1016/j.jbiomech.2016.02.041.
[31] D.J. Acheson, Elementary Fluid Dynamics, Oxford University Press, 1990. · Zbl 0719.76001
[32] A. Kačeniauskas, Development of efficient interface sharpening procedure for viscous incompressible flows, Informatica, 19, 487-504, 2008. · Zbl 1162.76029
[33] W. Nichols, M. O’Rourke, C. Vlachopoulos [Eds.], [with a contribution from] A. Hoeks, R. Reneman, McDonald’s Blood Flow in Arteries: Theoretical, Experimental and Clinical Principles, 6th Edition, CRC Press, Taylor & Francis Group, 2011.
[34] F.R. Menter, Two-equation eddy-viscosity turbulence models for engineering applicaThe geometric model-based patient-specific simulations. . .345
[35] Z. Šír, B. Bastl, M. Lávička, Hermite interpolation by hypocycloids and epicycloids with rational offsets, Computer Aided Geometric Design, 27, 405-417, 2010; doi: 10.1016/j.cagd.2010.02.001. · Zbl 1211.65018
[36] S.N. Krivoshapko, V.N. Ivanov, Encyclopedia of Analytical Surfaces, Springer International Publishing, 2015; doi: 10.1007/978-3-319-11773-7. · Zbl 1321.53001
[37] T. Stolarski, Y. Nakasone, S. Yoshimoto, Engineering Analysis with ANSYS Software, Elsevier Butterworth-Heinemann, 2007.
[38] M.R. Labrosse, K. Lobo, C.J. Beller, Structural analysis of the natural aortic valve in dynamics: from unpressurized to physiologically loaded, Journal of Biomechanics, 43, 1916-1922, 2010; doi: 10.1016/j.jbiomech.2010.03.020.
[39] A. Kačeniauskas, R. Pacevič, V. Starikovičius, A. Maknickas, M. Stašk ¯unien ˙e, G. Davidavičius, Development of cloud services for patient-specific simulations of blood flows through aortic valves, Advances in Engineering Software, 103, 57-64, 2017; doi: 10.1016/j.advengsoft.2016.01.013.
[40] A. Kačeniauskas, R. Pacevič, M. Stašk¯unien ˙e, D. Šešok, D. Rusakevičius, A. Aidietis, G. Davidavičius, Private cloud infrastructure for applications of mechanical and dedical engineering, Information Technology and Control, 44, 254-261, 2015; doi: http://www.itc.ktu.lt/index.php/ITC/article/view/7379.
[41] R. Pacevič, A. Kačeniauskas, The development of VisLT visualization service in Openstack cloud infrastructure, Advances in Engineering Software, 103, 46-56, 2017; doi: 10.1016/j.advengsoft.2016.06.012.
[42] F. Sturla, E. Votta, M. Stevanella, C.A. Conti, A. Redaelli, Impact of modeling fluid-structure interaction in the computational analysis of aortic root biomechanics, Medical Engineering and Physics, 35, 1721-1730, 2013; doi: 10.1016/j.medengphy.2013.07.015.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.