×

Double Schubert polynomials for the classical groups. (English) Zbl 1291.05222

Summary: For each infinite series of the classical Lie groups of type \(B\), \(C\) or \(D\), we construct a family of polynomials parametrized by the elements of the corresponding Weyl group of infinite rank. These polynomials represent the Schubert classes in the equivariant cohomology of the appropriate flag variety. They satisfy a stability property, and are a natural extension of the (single) Schubert polynomials of Billey and Haiman, which represent non-equivariant Schubert classes. They are also positive in a certain sense, and when indexed by maximal Grassmannian elements, or by the longest element in a finite Weyl group, these polynomials can be expressed in terms of the factorial analogues of Schur’s \(Q\)- or \(P\)-functions defined earlier by Ivanov.

MSC:

05E15 Combinatorial aspects of groups and algebras (MSC2010)
14N15 Classical problems, Schubert calculus
14M15 Grassmannians, Schubert varieties, flag manifolds
05E05 Symmetric functions and generalizations
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Andersen, H. H.; Jantzen, J. C.; Soergel, W., Representations of quantum groups at a \(p\) th root of unity and of semisimple groups in characteristic \(p\): independence of \(p\), Astérisque, 220, 321 (1994), (in English, French summary) · Zbl 0802.17009
[2] Arabia, A., Cohomologie \(T\)-équivariante de \(G / B\) pour an groupe \(G\) de Kac-Moody, C. R. Acad. Sci. Paris Sér. I. Math., 302, 631-634 (1986) · Zbl 0596.22009
[3] Bernstein, I. N.; Gelfand, I. M.; Gelfand, S. I., Schubert cells and cohomology of the spaces \(G / P\), Russian Math. Surveys, 28, 3, 1-26 (1973) · Zbl 0289.57024
[4] Billey, S., Transition equations for isotropic flag manifolds, Discrete Math., 193, 69-84 (1998) · Zbl 1061.05510
[5] Billey, S., Kostant polynomials and the cohomology ring for \(G / B\), Duke Math. J., 96, 1, 205-224 (1999) · Zbl 0980.22018
[6] Billey, S.; Haiman, M., Schubert polynomials for the classical groups, J. Amer. Math. Soc., 8, 2, 443-482 (1995) · Zbl 0832.05098
[7] Björner, A.; Brenti, F., Combinatorics of Coxeter Groups, Grad. Texts in Math., vol. 231 (2005), Springer-Verlag: Springer-Verlag New York · Zbl 1110.05001
[8] Chevalley, C., Sur les décompositions cellulaires des espaces \(G / B\), (Haboush, W.; Parhall, B., Algebraic Groups and Their Generalizations: Classical Methods. Algebraic Groups and Their Generalizations: Classical Methods, Proc. Sympos. Pure Math., vol. 56 (1994), Amer. Math. Soc.), 1-23, (part 1) · Zbl 0824.14042
[9] Demazure, M., Désingularization des variétés de Schubert generalisées, Ann. Sci. École Norm. Sup., 7, 53-88 (1974) · Zbl 0312.14009
[10] Fehér, L.; Rimányi, R., Schur and Schubert polynomials as Thom polynomials — cohomology of moduli spaces, Cent. Eur. J. Math., 1, 4, 418-434 (2003), (electronic) · Zbl 1038.57008
[11] Fomin, S.; Kirillov, A. N., Combinatorial \(B_n\)-analogues of Schubert polynomials, Trans. Amer. Math. Soc., 348, 9, 3591-3620 (1996) · Zbl 0871.05060
[12] Fulton, W., Flags, Schubert polynomials, degeneracy loci, and determinantal formulas, Duke Math. J., 65, 381-420 (1992) · Zbl 0788.14044
[13] Fulton, W., Determinantal formulas for orthogonal and symplectic degeneracy loci, J. Differential Geom., 43, 276-290 (1996) · Zbl 0911.14001
[14] Fulton, W.; Pragacz, P., Schubert Varieties and Degeneracy Loci, Lecture Notes in Math., vol. 1689 (1998), Springer-Verlag: Springer-Verlag Berlin · Zbl 0913.14016
[15] Goresky, M.; Kottwitz, R.; MacPherson, R., Equivariant cohomology, Koszul duality, and the localization theorem, Invent. Math., 131, 25-83 (1998) · Zbl 0897.22009
[16] Ikeda, T., Schubert classes in the equivariant cohomology of the Lagrangian Grassmannian, Adv. Math., 215, 1-23 (2007) · Zbl 1126.14060
[17] Ikeda, T.; Mihalcea, L.; Naruse, H., Double Schubert polynomials for the classical groups, Extended Abstract for Formal Power Series and Algebraic Combinatorics. Extended Abstract for Formal Power Series and Algebraic Combinatorics, Valparaiso - Viña del Mar, Chile, 2008. Extended Abstract for Formal Power Series and Algebraic Combinatorics. Extended Abstract for Formal Power Series and Algebraic Combinatorics, Valparaiso - Viña del Mar, Chile, 2008, Discrete Math. Theor. Comput. Sci. Proc. AJ, 665-676 (2008), The paper is available online at: · Zbl 1394.14031
[18] Ikeda, T.; Naruse, H., Excited Young diagrams and equivariant Schubert calculus, Trans. Amer. Math. Soc., 361, 5193-5221 (2009) · Zbl 1229.05287
[19] Ikeda, T.; Naruse, H., Double Schubert Polynomials of Classical Type and Excited Young Diagrams, Kôkyûroku Bessatsu, vol. B11 (2009) · Zbl 1187.14058
[20] Ivanov, V. N., Interpolation analogue of Schur \(Q\)-functions, Zap. Nauc. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov., 307, 99-119 (2004) · Zbl 1073.05069
[21] Józefiak, T., Schur \(Q\)-functions and cohomology of isotropic Grassmannians, Math. Proc. Cambridge Philos. Soc., 109, 471-478 (1991) · Zbl 0729.20018
[22] Kashiwara, M., The flag manifold of Kac-Moody Lie algebra, (Algebraic Analysis, Geometry, and Number Theory. Algebraic Analysis, Geometry, and Number Theory, Baltimore, MD, 1988 (1989), Johns Hopkins Univ. Press: Johns Hopkins Univ. Press Baltimore, MD), 161-190 · Zbl 0764.17019
[23] Kazarian, M., On Lagrange and symmetric degeneracy loci, preprint, available at:
[24] A. Kirillov, private communication.; A. Kirillov, private communication.
[25] Knutson, A., A Schubert calculus recurrence from the noncomplex W-action on \(G / B\)
[26] Knutson, A.; Miller, E., Gröbner geometry of Schubert polynomials, Ann. of Math. (2), 161, 3, 1245-1318 (2005) · Zbl 1089.14007
[27] Knutson, A.; Tao, T., Puzzles and (equivariant) cohomology of Grassmannians, Duke Math. J., 119, 2, 221-260 (2003) · Zbl 1064.14063
[28] Kostant, B.; Kumar, S., The nil Hecke ring and cohomology of \(G / P\) for a Kac-Moody group \(G\), Adv. Math., 62, 187-237 (1986) · Zbl 0641.17008
[29] Kresch, A.; Tamvakis, H., Double Schubert polynomials and degeneracy loci for the classical groups, Ann. Inst. Fourier, 52, 6, 1681-1727 (2002) · Zbl 1059.14063
[30] Kumar, S., Kac-Moody Groups, Their Flag Varieties and Representation Theory, Progr. Math., vol. 204 (2002), Birkhäuser: Birkhäuser Boston · Zbl 1026.17030
[31] Lascoux, A., Classes de Chern des variétés de drapeaux, C. R. Acad. Sci. Paris Sér. I Math., 295, 1, 1-43 (1982) · Zbl 0495.14032
[32] Lascoux, A.; Schützenberger, M.-P., Polynômes de Schubert, C. R. Acad. Sci. Paris Sér. I Math., 294, 13, 447-450 (1982) · Zbl 0495.14031
[33] Macdonald, I. G., Notes on Schubert Polynomials, Publ. LACIM (1991), Université du Québec: Université du Québec Motréal · Zbl 0784.05061
[34] Macdonald, I. G., Symmetric Functions and Hall Polynomials (1995), Oxford Univ. Press: Oxford Univ. Press Oxford · Zbl 0487.20007
[35] Mihalcea, L. C., Giambelli formulae for the equivariant quantum cohomology of the Grassmannian, Trans. Amer. Math. Soc., 360, 5, 2285-2301 (2008) · Zbl 1136.14046
[36] Molev, A. I.; Sagan, B. E., A Littlewood-Richardson rule for factorial Schur functions, Trans. Amer. Math. Soc., 351, 11, 4429-4443 (1999) · Zbl 0972.05053
[37] D. Peterson, MIT Lecture Notes, 1997, unpublished.; D. Peterson, MIT Lecture Notes, 1997, unpublished.
[38] Pragacz, P., Algebro-geometric applications of Schur \(S\)- and \(Q\)-polynomials, (Séminaire d’Algèbre Dubreil-Malliavin, 1989-1990. Séminaire d’Algèbre Dubreil-Malliavin, 1989-1990, Lecture Notes in Math., vol. 1478 (1991), Springer-Verlag: Springer-Verlag Berlin), 130-191 · Zbl 0783.14031
[39] Pragacz, P.; Ratajski, J., Formulas for Lagrangian and orthogonal degeneracy loci; \( \widetilde{Q} \)-polynomial approach, Compos. Math., 107, 1, 11-87 (1997) · Zbl 0916.14026
[40] Schur, I., Über die Darstellung der symmetrischen und der alternierenden Gruppe durch gebrochene lineare Substitutionen, J. Reine Angew. Math., 139, 155-250 (1911) · JFM 42.0154.02
[41] Tymoczko, J. S., Permutation actions on equivariant cohomology of flag varieties, (Toric Topology. Toric Topology, Contemp. Math., vol. 460 (2008), Amer. Math. Soc.: Amer. Math. Soc. Providence, RI), 365-384 · Zbl 1147.14024
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.