×

Universal Taylor series with maximal cluster sets. (English) Zbl 1186.30003

The authors link the overconvergence properties of certain Taylor series in the unit disk \(\mathbb D\) to the maximality of their cluster sets, so connecting outer wild behaviour with inner wild behaviour.
A function \(f\) holomorphic in \(\mathbb{D}\), where \(f(z)=\sum^\infty_{k=0}\), is called a universal Taylor series if, for every compact subset \(K\) of \(\mathbb{C}\setminus\overline{\mathbb{D}}\) with \(\mathbb{C}\setminus K\) connected, and every function \(h\) continuous on \(K\) and holomorphic in the interior of \(K\), there exists an increasing sequence \((\lambda_n)\) of integers such that the \(\lambda_n\)th partial sum of the power series for \(f\) converges uniformly to \(h\) on \(K\) as \(n\to\infty\). This notion was introduced by V. Nestoridis [Ann. Inst. Fourier 46, No. 5, 1293–1306 (1996; Zbl 0865.30001)].
The authors prove the existence of a dense linear submanifold of holomorphic functions in \(\mathbb{D}\) that are, except for zero, universal Taylor series and simultaneously have maximal cluster sets along many curves tending to the boundary. This complements an earlier result of A. Melas and V. Nestoridis [Adv. Math. 157, No. 2, 138–176 (2001; Zbl 0985.30023)]. It follows that \(\partial\mathbb D\) is a natural boundary for every universal Taylor series, thus proving a conjecture of J.-P. Kahane [J. Anal. Math. 80, 143–182 (2000; Zbl 0961.42001)].
Next, using a method of W. J. Schneider [Approximation and harmonic measure, Aspects of contemporary complex analysis, Proc. instr. Conf., Durham/Engl. 1979, 333–349 (1980; Zbl 0505.30025)], they construct a dense linear manifold of universal Taylor series having, for each boundary point, limit zero along some path tangential to the corresponding radius.
Finally, using an extension of Mergelyan’s Approximation Theorem due to F. Bayart [Mich. Math. J. 53, No. 2, 291–303 (2005; Zbl 1092.46006)], they prove the existence of a closed infinite manifold of holomorphic functions with both outer wild behaviour and inner wild behaviour.

MSC:

30B30 Boundary behavior of power series in one complex variable; over-convergence
30D40 Cluster sets, prime ends, boundary behavior
30E10 Approximation in the complex plane
47B38 Linear operators on function spaces (general)
PDFBibTeX XMLCite
Full Text: DOI Euclid EuDML

References:

[1] Aizpuru, A., Pérez-Eslava, C. and Seoane-Sepúlveda, J.B.: Linear structure of sets of divergent sequences and series. Linear Algebra Appl. 418 (2006), no. 2-3, 595-598. · Zbl 1106.40001 · doi:10.1016/j.laa.2006.02.041
[2] Armitage, D.H. and Costakis, G.: Boundary behavior of universal Taylor series and their derivatives. Constr. Approx. 24 (2006), no. 1, 1-15. · Zbl 1098.30003 · doi:10.1007/s00365-005-0610-0
[3] Aron, R., Bès, J., León, F. and Peris, A.: Operators with common hypercyclic subspaces. J. Operator Theory 54 (2005), no. 2, 251-260. · Zbl 1106.47010
[4] Aron, R., García, D. and Maestre, M.: Linearity in non-linear problems. Rev. R. Acad. Cienc. Ser. A Mat. 95 (2001), no. 1, 7-12. · Zbl 1036.46033
[5] Aron, R., Gurariy, V.I. and Seoane, J.B.: Lineability and spaceability of sets of functions on \(\R\). Proc. Amer. Math. Soc. 133 (2005), no. 3, 795-803. · Zbl 1069.26006 · doi:10.1090/S0002-9939-04-07533-1
[6] Bayart, F.: Topological and algebraic genericity of divergence and universality. Studia Math. 167 (2005), no. 2, 161-181. · Zbl 1076.46012 · doi:10.4064/sm167-2-4
[7] Bayart, F.: Linearity of sets of strange functions. Michigan Math. J. 53 (2005), no. 2, 291-303. · Zbl 1092.46006 · doi:10.1307/mmj/1123090769
[8] Bayart, F.: Boundary behavior and Cèsaro means of universal Taylor series. Rev. Mat. Complut. 19 (2006), no. 1, 235-247. · Zbl 1103.30003 · doi:10.5209/rev_REMA.2006.v19.n1.16662
[9] Beauzamy, B.: Introduction to Banach spaces and their geometry. North Holland Mathematics Studies 68 . North Holland Publishing Co., Amsterdam-New York, 1982. · Zbl 0491.46014
[10] Bermúdez, T. Bonilla, A. and Peris, A.: On hypercyclicity and supercyclicity criteria. Bull. Austral. Math. Soc. 70 (2004), no. 1, 45-54. · Zbl 1071.47007 · doi:10.1017/S0004972700035802
[11] Bernal-González, L.: Hypercyclic subspaces in Fréchet spaces. Proc. Amer. Math. Soc. 134 (2006), no. 7, 1955-1961. · Zbl 1094.47010 · doi:10.1090/S0002-9939-05-08242-0
[12] Bernal-González, L., Bonilla, A., Calderón-Moreno, M.C. and Prado-Bassas, J.A.: Maximal cluster sets of \(L\)-analytic functions along arbitrary curves. Constr. Approx. 25 (2007), no. 2, 211-219. · Zbl 1109.30031 · doi:10.1007/s00365-006-0636-5
[13] Bernal-González, L., Calderón-Moreno, M.C. and Luh, W.: Universal matrix transforms of holomorphic functions. Houston J. Math. 32 (2006), no. 1, 315-324. · Zbl 1102.30034
[14] Bernal-González, A., Calderón-Moreno, M.C. and Prado-Bassas, J.A.: Maximal cluster sets along arbitrary curves. J. Approx. Theory 129 (2004), no. 2, 207-216. · Zbl 1053.30021 · doi:10.1016/j.jat.2004.06.003
[15] Bernal-González, A., Calderón-Moreno, M.C. and Prado-Bassas, J.A.: Simultaneously maximal radial cluster sets. J. Approx. Theory 135 (2005), no. 1, 114-124. · Zbl 1079.30042 · doi:10.1016/j.jat.2005.04.002
[16] Bernal-González, L. and Grosse-Erdmann, K.G.: The hypercyclicity criterion for sequences of operators. Studia Math. 157 (2003), no. 1, 17-32. · Zbl 1032.47006 · doi:10.4064/sm157-1-2
[17] Bernal-González, L. and Montes-Rodríguez, A.: Non-finite dimensional closed vector spaces of universal functions for composition operators. J. Approx. Theory 82 (1995), no. 3, 375-391. · Zbl 0831.30024 · doi:10.1006/jath.1995.1086
[18] Bès, J.P.: Invariant manifolds of hypercyclic vectors for the real scalar case. Proc. Amer. Math. Soc. 127 (1999), no. 6, 1801-1804. JSTOR: · Zbl 0914.47005 · doi:10.1090/S0002-9939-99-04720-6
[19] Bès, J.P. and Peris, A.: Hereditarily hypercyclic operators. J. Funct. Anal. 167 (1999), no. 1, 94-112. · Zbl 0941.47002 · doi:10.1006/jfan.1999.3437
[20] Bonet, J., Martínez-Giménez, F. and Peris, A.: Universal and chaotic multipliers on spaces of operators. J. Math. Anal. Appl. 297 (2004), no. 2, 599-611. · Zbl 1062.47011 · doi:10.1016/j.jmaa.2004.03.073
[21] Boas, R.P.: Entire functions. Academic Press Inc., New York, 1954. · Zbl 0058.30201
[22] Bourdon, P.: Invariant manifolds of hypercyclic vectors. Proc. Amer. Math. Soc. 118 (1993), no. 3, 845-847. · Zbl 0809.47005 · doi:10.2307/2160131
[23] Chan, K.C.: Hypercyclicity of the operator algebra for a separable Hilbert space. J. Operator Theory 42 (1999), no. 2, 231-244. · Zbl 0997.47058
[24] Chan, K.C. and Taylor, R.D.: Hypercyclic subspaces of a Banach space. Integral Equations Operator Theory 41 (2001), no. 4, 381-388. · Zbl 0995.46014 · doi:10.1007/BF01202099
[25] Collingwood, E.F. and Lohwater, A.J.: The theory of cluster sets. Cambridge Tracts in Mathematics and Mathematical Physics 56 . Cambridge University Press, Cambridge, 1966. · Zbl 0149.03003
[26] Chui, C. and Parnes, M.N.: Approximation by overconvergence of a power series. J. Math. Anal. Appl. 36 (1971), 693-696. · Zbl 0224.30006 · doi:10.1016/0022-247X(71)90049-7
[27] Costakis, G.: On the radial behavior of universal Taylor series. Monatsh. Math. 145 (2005), no. 1, 11-17. · Zbl 1079.30002 · doi:10.1007/s00605-004-0276-x
[28] Gaier, D.: Lectures on Complex Approximation. London Math. Society Lecture Notes 221 . Cambridge Univ. Press, 1995.
[29] García-Pacheco, F.J., Palmberg, N. and Seoane-Sepúlveda, J.B.: Lineability and algebrability of pathological phenomena in analysis. J. Math. Anal. Appl. 326 (2007), no. 2, 929-939. · Zbl 1115.26003 · doi:10.1016/j.jmaa.2006.03.025
[30] García-Pacheco, F.J. and Seoane-Sepúlveda, J.B.: Vector spaces of non-measurable functions. Acta Math. Sin. (Engl. Ser.) 22 (2006), no. 6, 1805-1808. · Zbl 1126.28002 · doi:10.1007/s10114-005-0726-y
[31] González, M., León-Saavedra, F. and Montes-Rodríguez, A.: Semi-Fredholm Theory: hypercyclic and supercyclic subspaces. Proc. London Math. Soc. (3) 81 (2000), no. 1, 169-189. · Zbl 1028.47007 · doi:10.1112/S0024611500012454
[32] Grosse-Erdmann, K.G.: Universal families and hypercyclic operators. Bull. Amer. Math. Soc. (N.S.) 36 (1999), no. 3, 345-381. · Zbl 0933.47003 · doi:10.1090/S0273-0979-99-00788-0
[33] Gurariy, V. and Quarta, L.: On lineability of sets of continuous functions. J. Math. Anal. Appl. 294 (2004), no. 1, 62-72. · Zbl 1053.46014 · doi:10.1016/j.jmaa.2004.01.036
[34] Herzog, G.: On zero-free universal entire functions. Arch. Math. 63 (1994), no. 4, 329-332. · Zbl 0807.30014 · doi:10.1007/BF01189569
[35] Kahane, J.P.: Baire’s category theorem and trigonometric series. J. Anal. Math. 80 (2000), 143-182. · Zbl 0961.42001 · doi:10.1007/BF02791536
[36] Kierst, St. and Szpilrajn, D.: Sur certaines singularités des fonctions analytiques uniformes. Fund. Math. 21 (1933), 276-294. · Zbl 0008.07401
[37] Kolyada, S. and Snoha, L.: Some aspects of topological - A survey. In Iteration Theory (ECIT 94, Opava) , 3-35. Grazer Math. Ber. 334 . Karl-Franzens-Univ. Graz, Graz, 1997. · Zbl 0907.54036
[38] León-Saavedra, F. and Montes-Rodríguez, A.: Spectral theory and hypercyclic subspaces. Trans. Amer. Math. Soc. 353 (2001), no. 1, 247-267. JSTOR: · Zbl 0961.47003 · doi:10.1090/S0002-9947-00-02743-4
[39] Luh, W.: Approximation analytischer Funktionen durch überkonvergente Potenzreihen und deren Matrix-Transformierten. Mitt. Math. Sem. Giessen Heft 88 , 1970. · Zbl 0231.30005
[40] Lusin, N. and Privalov, J.: Sur l’unicité et la multiplicité des fonctions analitiques. Ann. Sci. École Norm. Sup. 42 (1925), 143-191. · JFM 51.0245.01
[41] Martínez-Giménez, F. and Peris, A.: Universality and chaos for tensor products of operators. J. Approx. Theory 124 (2003), no. 1, 7-24. · Zbl 1062.47014 · doi:10.1016/S0021-9045(03)00118-7
[42] Melas, A. and Nestoridis, V.: Universality of Taylor series as a generic property of holomorphic functions. Adv. Math. 157 (2001), no. 2, 138-176. · Zbl 0985.30023 · doi:10.1006/aima.2000.1955
[43] Montes-Rodríguez, A.: Banach spaces of hypercyclic vectors. Michigan Math. J. 43 (1996), no. 3, 419-436. · Zbl 0907.47023 · doi:10.1307/mmj/1029005536
[44] Montes-Rodríguez, A. and Romero-Moreno, M.C.: Supercyclicity in the operator algebra. Studia Math. 150 (2002), no. 3, 201-213. · Zbl 1006.47009 · doi:10.4064/sm150-3-1
[45] Nersesjan, A.A.: Carleman sets. Izv. Akad. Nauk Armjan. SSR Ser. Mat. 6 (1971), no. 6, 465-471. English transl. in: Amer. Math. Soc. Transl. (2) 122 (1984), 99-104.
[46] Nestoridis, V.: Universal Taylor series. Ann. Inst. Fourier (Grenoble) 46 (1996), no. 5, 1293-1306. · Zbl 0865.30001 · doi:10.5802/aif.1549
[47] Noshiro, K.: Cluster sets. Ergebnisse der Mathematik und ihrer Grenzgebiete. N. F., Heft 28 . Springer-Verlag, Berlin, 1960. · Zbl 0102.32903
[48] Oxtoby, J.C.: Measure and Category. Graduate Texts in Mathematics 2 . Springer-Verlag, New York-Berlin, 1980. · Zbl 0435.28011
[49] Petersson, H.: Hypercyclic subspaces for Fréchet spaces operators. J. Math. Anal. Appl. 319 (2006), no. 2, 764-782. · Zbl 1101.47006 · doi:10.1016/j.jmaa.2005.06.042
[50] Read, C.J.: The invariant subspace problem for a class of Banach spaces, II: Hypercyclic operators. Israel J. Math. 63 (1988), no. 1, 1-40. · Zbl 0782.47002 · doi:10.1007/BF02765019
[51] Schneider, W.J.: Approximation and harmonic measure. In Aspects of contemporary complex analysis (Proc. NATO Adv. Study Inst., Univ. Durham, Durham, 1979) 333-349. Academic Press, London-New York, 1980. · Zbl 0505.30025
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.